

Bitfenix BWG550M

Lab ID#: 137 Receipt Date: -Test Date: -

Anex

Report:

Report Date: Apr 7, 2018

DUT INFORMATION					
Brand	Bitfenix				
Manufacturer (OEM)	Channel Well Technology				
Series	Whisper				
Model Number	BWG550M				
Serial Number	707Q00065				
DUT Notes					

DUT SPECIFICATIONS					
Rated Voltage (Vrms)	100-240				
Rated Current (Arms)	8				
Rated Frequency (Hz)	47-63				
Rated Power (W)	550				
Туре	ATX12V				
Cooling	135mm Hydro Dynamic Bearing Fan (DF1352512SEMN)				
Semi-Passive Operation	×				
Cable Design	Fully Modular				

POWER SPECIFICATIONS									
Rail		3.3V	5V	12V	12V	12V	5VSB	-12V	
	Amps	20	20 20		25	30	2.5	0.3	
Max. Power Watts		100		550	550			3.6	
Total Max. Power (W)		550							

CABLES AND CONNECTORS

Modular Cables						
Description	Cable Count	Connector Count (Total)	Gauge			
ATX connector 20+4 pin (610mm)	1	1	18AWG			
4+4 pin EPS12V (650mm)	1	1	18AWG			
6+2 pin PCle (650mm)	2	2	18AWG			
SATA (500mm+150mm+150mm+150mm)	2	8	18AWG			
4 pin Molex (500mm+150mm+150mm+150mm)	1	4	18AWG			

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Bitfenix BWG550M

General Data	
Manufacturer (OEM)	CWT
Platform Model	GPU
Primary Side	
Transient Filter	4x Y caps, 2x X caps, 2x CM chokes, 1x MOV, 1x CAP004DG
Inrush Protection	NTC Thermistor & Relay
Bridge Rectifier(s)	1x GBU806 (600V, 8A @ 100°C)
APFC MOSFETS	2x Champion GP18550G (500V, 28A @ 150°C, 0.19 Ohm)
APFC Boost Diode	1x STMicroelectronics STTH8S06D (600V, 8A @ 175°C)
Hold-up Cap(s)	1x Nichicon (400V, 390uF, 2000h @ 105°C, GG)
Main Switchers	2x Silan Microelecronics SVF20N50F (500V, 12.6A @ 100°C, 0.270hm)
APFC Controller	Champion CM6502S & CM03X Green PFC controller
Switching Controller	Champion CM6901
Topology	Primary side: Half-Bridge & LLC Resonant Converter Secondary side: Synchronous Rectification & DC-DC converters
Secondary Side	
+12V MOSFETS	6x Sinopower SM4021NAKP (40V, 100A @ 100°C, 1.6mΩ)
5V & 3.3V	DC-DC Converters: 2x UBIQ QM3006D FETs (30V, 57A @ 100°C, 5.5mΩ), 2x UBIQ QM3004D FETs (30V, 40A @ 100°C, 8.5mΩ) PWM Controller: ANPEC APW7159C
Filtering Capacitors	Electrolytics: Nippon Chemi-Con (105°C, KY series, KZE series, KMG series), Nichicon (105°C) Polymers: FPCAP (Japan)
Supervisor IC	Sytronix ST9S429-PG14 (OCP [2x 12V channels, OVP, UVP, PG) & Weltrend WD7518D (OCP [2x 12V channels], SCP)
Fan Model	Martech DF1352512SEMN (135mm, 12V, 0.45A, Fluid Dynamic Bearing)
5VSB Circuit	
Standby PWM Controller	TinySwitch-LT TNY177PN (18W Peak)

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 2/9

Bitfenix BWG550M

Anex

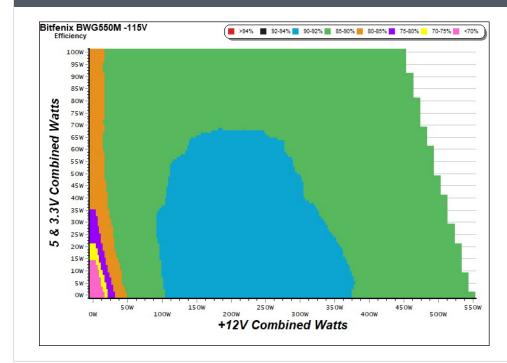
RESULTS	
Temperature Range (°C /°F)	30-32 / 86-89.6
Average Efficiency	88.803
Efficiency With 10W (\leq 500W) or 2% (>500W) Load -115V	0.000
Average Efficiency 5VSB	78.294
Standby Power Consumption (W) -115V	0.0499894
Standby Power Consumption (W) -230V	0.0828786
Average PF	0.981
ErP Lot 3/6 Ready	
(EU) No 617/2013 Compliance	
Avg Noise Output	15.37
Efficiency Rating (ETA)	PLATINUM
Noise Rating (LAMBDA)	A+

TEST EQUIPMENT					
Electronic Loads	Chroma 6314A x2 Chroma 63601-5 x2 63123A x6 Chroma 63600-2 63102A 63640-80 x10 63101A 63610-80-20				
AC Sources	Chroma 6530, Chroma 61604				
Power Analyzers	N4L PPA1530, N4L PPA5530				
Oscilloscopes	Picoscope 4444 & 3424, Keysight DSOX3024A, Rigol DS2072A				
Voltmeter	Keithley 2015 THD 6.5 Digit				
Sound Analyzer	Bruel & Kjaer 2250-L G4				
Microphone	Bruel & Kjaer Type 4955-A, Bruel & Kjaer Type 4189				
Data Loggers	Picoscope TC-08 x2, Labjack U3-HV x2				

All data and graphs included in this test report can be used by any individual on the following conditions:

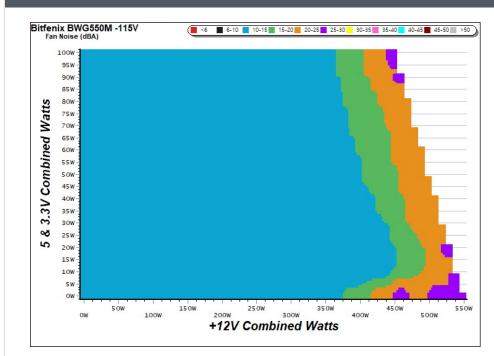
> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Bitfenix BWG550M

Anex


EFFICIENCY GRAPH

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH

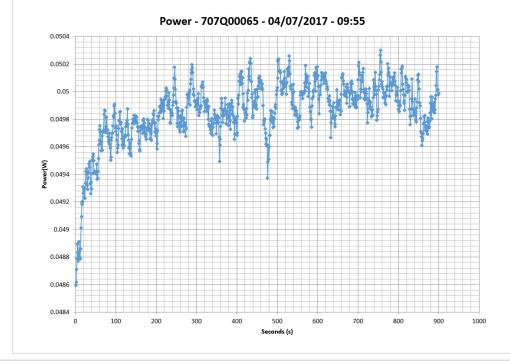
INFO

The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

- > It should be mentioned that the test results are provided by Cybenetics
- > The link to the original test results document should be provided in any case

PAGE 4/9



Anex

Bitfenix BWG550M

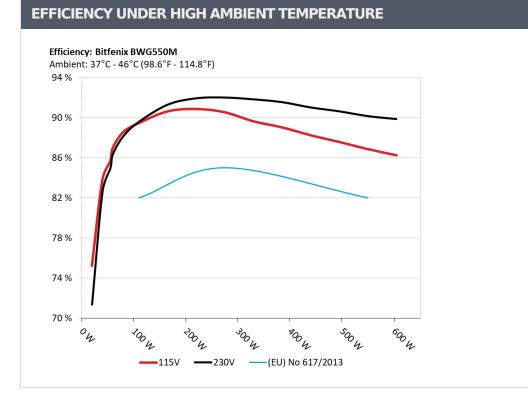
5VSB	EFFICIEN	CY -115V (ER	RP LOT 3/6 &	CEC)	5VSB	EFFICIEN	CY -230V (ER	RP LOT 3/6 &	CEC)
Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts	Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
1	0.042A	0.212	67.0400/	0.032	1	0.042A	0.212	E0.0020/	0.011
1	5.103V	0.312	67.949%	115.15V	1	5.103V	0.365	58.082%	230.37V
2	0.087A	0.444	75 25 40/	0.058	2	0.087A	0.443	68.682%	0.019
2	5.101V	0.590	75.254%	115.16V	Z	5.101V	0.645	08.082%	230.39V
3	0.542A	2.759	70.0000/	0.260	3	0.542A	2.758	22000/	0.101
5	5.090V	3.457	79.809%	115.13V	5	5.090V	3.567	77.320%	230.38V
	1.002A	5.090	77 0260/	0.358	4	1.002A 5.090	5.090	70.0700/	0.170
4	5.080V	6.531	77.936%	115.14V	4	5.080V	6.519	78.079%	230.38V
_	1.502A	7.612		0.410	5	1.502A	7.610	70.1 0 40/	0.228
5	5.069V	9.786	77.785%	115.14V	Э	5.068V	9.736	78.164%	230.38V
C	2.501A	12.619	75 71 70/	0.459	C	2.501A	12.620	77 0070/	0.305
6	5.045V	16.666	75.717%	115.14V	6	5.046V	16.203	77.887%	230.38V

VAMPIRE POWER -115V

All data and graphs included in this test report can be used by any individual on the following conditions:

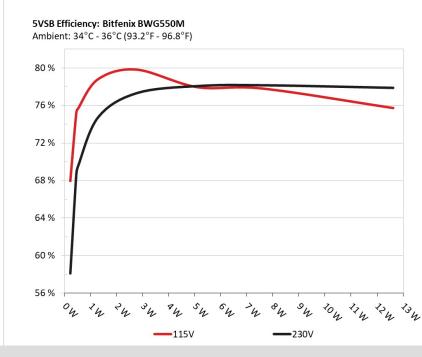
> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case


INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

Anex


Bitfenix BWG550M

INFO

The PSU's efficiency under high ambient temperatures with 115V and 230V input. For this graph the results of the 10-110% load regulation table are used

5VSB EFFICIENCY

INFO

This graph depicts the efficiency levels of the 5VSB rail with 115V and 230V input

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Bitfenix BWG550M

10-110% LOAD TESTS										
Test #	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	Fan Noise (dB[A])	Temps (In/Out)	PF/AC Volts
-	2.766A	1.991A	1.984A	0.981A	54.765	05 62694	470	11.0	38.42°C	0.946
1	12.014V	5.005V	3.321V	5.077V	63.951	85.636%	470	11.6	43.24°C	115.17V
2	6.571A	3.002A	2.983A	1.181A	109.759	00 4550/	455	105	38.55°C	0.975
2	12.005V	4.996V	3.315V	5.070V	122.698	89.455%	455	10.5	43.61°C	115.17V
2	10.734A	3.510A	3.500A	1.380A	164.857	00 (220)	470	11.0	39.01°C	0.982
3	11.997V	4.988V	3.310V	5.064V	181.917	90.622%	470	11.6	44.85°C	115.17V
4	14.894A	4.016A	3.991A	1.580A	219.763	00.0000/	470	11.0	39.78°C	0.985
4	11.990V	4.981V	3.305V	5.057V	241.870	90.860%	470	11.6	45.89°C	115.17V
-	18.716A	5.022A	4.999A	1.781A	274.695	00 5000/		70 11.6	40.12°C	0.986
5	11.981V	4.973V	3.299V	5.049V	303.410	90.536%	470		47.16°C	115.17V
6	22.539A	6.046A	6.009A	1.980A	329.700	00 (220)	470	11.0	41.16°C	0.986
6	11.975V	4.965V	3.294V	5.042V	367.833	89.633%		11.6	49.06°C	115.17V
7	26.371A	7.057A	7.020A	2.182A	384.643	00.0269/	640	16.4	42.00°C	0.985
7	11.967V	4.958V	3.289V	5.034V	432.056	89.026%		16.4	50.12°C	115.17V
-	30.205A	8.086A	8.038A	2.385A	439.601	00.0000/	070 07	07.0	42.72°C	0.985
8	11.958V	4.950V	3.284V	5.026V	498.199	88.238%	970	27.3	51.87°C	115.16V
0	34.476A	8.599A	8.569A	2.385A	494.632	07 5700/	1000	25.2	43.48°C	0.985
9	11.952V	4.943V	3.278V	5.023V	564.827	87.572%	1280	35.2	52.96°C	115.16V
10	38.709A	9.118A	9.067A	2.489A	549.523	00.0550/	1455	20.2	44.68°C	0.986
10	11.944V	4.936V	3.274V	5.018V	632.692	86.855%	1455	39.2	54.48°C	115.16V
11	43.323A	9.127A	9.078A	2.489A	604.455	06.2409/	1455	20.2	45.99°C	0.988
11	11.940V	4.932V	3.270V	5.014V	700.896	86.240%	1455	39.2	56.04°C	115.16V
0.1	0.096A	12.014A	12.004A	0.004A	100.507	04 0070/	470	11.0	44.31°C	0.974
CL1	11.994V	4.963V	3.308V	5.095V	118.666	84.697%	470	11.6	55.31°C	115.18V
	45.782A	1.001A	1.002A	1.001A	560.977	07.0000/	1455	20.2	44.88°C	0.987
CL2	11.962V	4.970V	3.287V	5.059V	639.671	87.698%	1455	39.2	54.19°C	115.16V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 7/9

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Bitfenix BWG550M

20-80W LOAD TESTS									
Test #	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	Fan Noise (dB[A])	PF/AC Volts
1	1.214A	0.488A	0.479A	0.195A	19.627	75 2020/	455	10.5	0.819
1	12.020V	5.014V	3.328V	5.097V	26.099	75.202%	455		115.17V
2	2.454A	0.992A	0.990A	0.391A	39.736	02 70 40/	470	11.6	0.918
Z	12.015V	5.010V	3.323V	5.093V	47.421	83.794%			115.17V
2	3.697A	1.485A	1.503A	0.585A	59.815	00.0000/	470	11.6	0.949
3	12.013V	5.007V	3.321V	5.087V	68.762	86.988%	470		115.18V
	4.928A	1.996A	1.986A	0.785A	79.751	00 5 6 00 /	470	11.6	0.965
4	12.010V	5.003V	3.319V	5.081V	90.053	88.560%	470		115.17V

RIPPLE MEASUREMENTS

Test	12V	5V	3.3V	5VSB	Pass/Fail			
10% Load	12.2 mV	8.4 mV	7.2 mV	9.0 mV	Pass			
20% Load	17.8 mV	8.6 mV	9.0 mV	6.1 mV	Pass			
30% Load	17.8 mV	8.3 mV	10.3 mV	7.1 mV	Pass			
40% Load	16.7 mV	8.6 mV	11.4 mV	7.4 mV	Pass			
50% Load	16.8 mV	8.8 mV	11.8 mV	10.0 mV	Pass			
60% Load	19.2 mV	8.9 mV	12.0 mV	11.8 mV	Pass			
70% Load	19.2 mV	10.4 mV	14.0 mV	19.5 mV	Pass			
80% Load	18.1 mV	10.7 mV	16.9 mV	16.3 mV	Pass			
90% Load	18.1 mV	19.1 mV	22.8 mV	18.0 mV	Pass			
100% Load	18.6 mV	13.0 mV	21.0 mV	21.1 mV	Pass			
110% Load	20.3 mV	13.4 mV	24.1 mV	24.8 mV	Pass			
Crossload 1	20.5 mV	12.2 mV	9.5 mV	6.0 mV	Pass			
Crossload 2	17.6 mV	11.9 mV	21.0 mV	20.5 mV	Pass			

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 8/9

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Bitfenix BWG550M

HOLD-UP TIME & POWER OK SIGNAL (230V)				
Hold-Up Time (ms)	13.26			
AC Loss to PWR_OK Hold Up Time (ms)	12.50			
PWR_OK Inactive to DC Loss Delay (ms)	0.76			

> The link to the original test results document should be provided in any case

PAGE 9/9

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted