

EVGA SuperNOVA 550 G3

Lab ID#: 224 Receipt Date: -Test Date: -

Anex

Report:

Report Date: Nov 24, 2018

DUT INFORMATION					
Brand	EVGA				
Manufacturer (OEM)	Super Flower				
Series	SuperNOVA G3				
Model Number	SuperNOVA 550 G3				
Serial Number	1703470515899011				
DUT Notes					

DUT SPECIFICATIONS					
Rated Voltage (Vrms)	100-240				
Rated Current (Arms)	10				
Rated Frequency (Hz)	50-60				
Rated Power (W)	550				
Туре	ATX12V				
Cooling	130mm Hydraulic Dynamic Bearing Fan (H1282412L)				
Semi-Passive Operation	✓ (selectable)				
Cable Design	Fully Modular				

POWER SPECIFICATIONS							
Rail	3.3V	5V	12V	5VSB	-12V		
Max Dawar	Amps	22	22	45.8	3	0.5	
Max. Power Watts		110	110		15	6	
Total Max. Power (W)	550						

CABLES AND CONNECTORS

Modular Cables				
Description	Cable Count	Connector Count (Total)	Gauge	In Cable Capacitors
ATX connector 20+4 pin (600mm)	1	1	18-22AWG	Yes
4+4 pin EPS12V (700mm)	1	1	18-22AWG	Yes
6+2 pin PCle (700mm)	1	1	18-22AWG	Yes
6+2 pin PCle (600mm+150mm)	1	2	18-22AWG	Yes
SATA (500mm+100mm+100mm)	2	6	18-20AWG	No
4 pin Molex (500mm+100mm+100mm+100mm)	1	4	18AWG	No
FDD Adapter (+100mm)	1	1	20AWG	No
AC Power Cord (1370mm) - C13 coupler	1	1	18AWG	No

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 1/8

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

EVGA SuperNOVA 550 G3

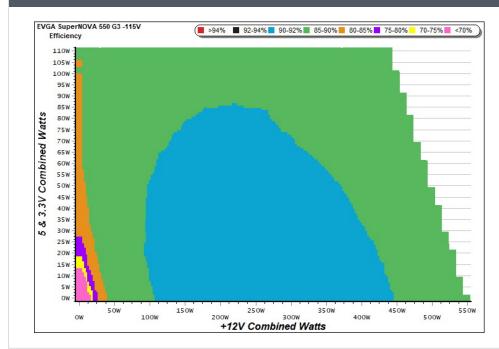
RESULTS 30-32 / 86-89.6 Temperature Range (°C/°F) Average Efficiency 89.362 Efficiency With 10W (≤500W) or 2% (>500W) Load -115V 0.000 78.240 Average Efficiency 5VSB Standby Power Consumption (W) -115V 0.0696769 Standby Power Consumption (W) -230V 0.1472520 Average PF 0.982 ErP Lot 3/6 Ready ./ (EU) No 617/2013 Compliance 1 Avg Noise Output 26.53 Efficiency Rating (ETA) PLATINUM Noise Rating (LAMBDA) A-

TEST EQUIPMENT						
Electronic Loads	Chroma 6314A x2 Chroma 63601-5 x2 63123A x6 Chroma 63600-2 63102A 63640-80-80 x10 63101A 63610-80-20					
AC Sources	Chroma 6530, Chroma 61604					
Power Analyzers	N4L PPA1530, N4L PPA5530					
Oscilloscopes	Picoscope 4444 & 3424, Keysight DSOX3024A, Rigol DS2072A					
Voltmeter	Keithley 2015 THD 6.5 Digit					
Sound Analyzer	Bruel & Kjaer 2250-L G4					
Microphone	Bruel & Kjaer Type 4955-A, Bruel & Kjaer Type 4189					
Data Loggers	Picoscope TC-08 x2, Labjack U3-HV x2					

All data and graphs included in this test report can be used by any individual on the following conditions:

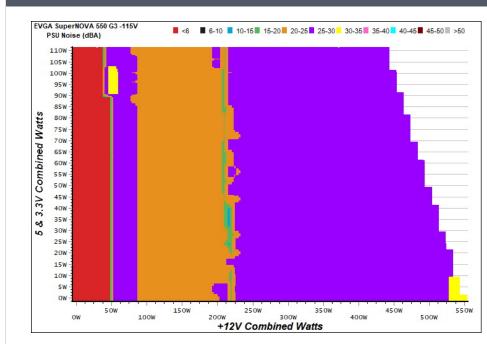
> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EVGA SuperNOVA 550 G3

Anex


EFFICIENCY GRAPH

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH

INFO

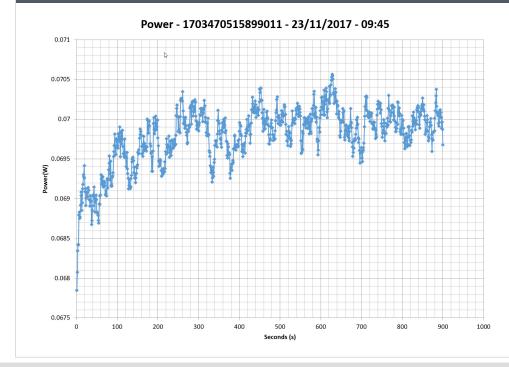
The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

- > It should be mentioned that the test results are provided by Cybenetics
- > The link to the original test results document should be provided in any case

PAGE 3/8

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted



Anex

EVGA SuperNOVA 550 G3

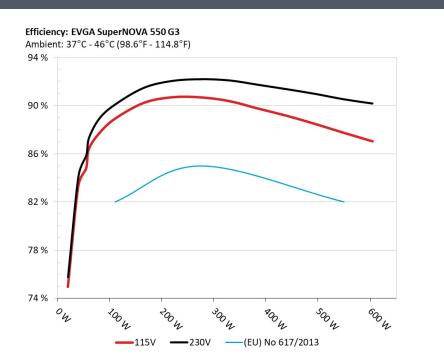
5VSB	EFFICIEN	CY -115V (EF	RP LOT 3/6 &	CEC)	5VSB	EFFICIEN	CY -230V (EF	RP LOT 3/6 &	CEC)
Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts	Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
1	0.042A	0.216	64.9659/	0.031	1	0.042A	0.216	F2 0499/	0.012
1	5.102V	0.333	64.865%	115.00V	1	5.102V	0.415	52.048%	230.10V
	0.088A	0.448	72 0020/	0.057	2	0.088A	0.448	64 10 20/	0.020
2	5.100V	0.613	73.083%	115.00V	Z	5.100V	0.698	64.183%	230.11V
2	0.543A	2.762	70 6 450/	0.254		0.543A	2.761	75 7600/	0.098
3	5.089V	3.512	78.645%	114.99V	3	5.089V	3.644	75.768%	230.08V
	1.003A	5.091	70.1.020/	0.352	4	1.003A	5.091		0.164
4	5.077V	6.431	79.163%	114.99V	4	5.078V	6.588	77.277%	230.09V
-	1.502A	7.608	70 0110/	0.406	5	1.502A	7.607	70 1 2 20/	0.219
5	5.065V	9.629	79.011%	114.99V	5	5.065V	9.736	78.133%	230.09V
C	3.002A	15.050	77 20 40/	0.476	6	3.002A	15.087	70.2000/	0.321
6	5.013V	19.446	77.394%	114.99V	6	5.026V	19.246	78.390%	230.09V

VAMPIRE POWER -115V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

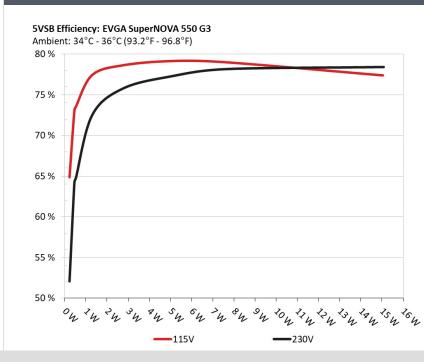
 $\ensuremath{\mathsf{\mathsf{>}}}$ The link to the original test results document should be provided in any case


INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

Anex

EVGA SuperNOVA 550 G3



EFFICIENCY UNDER HIGH AMBIENT TEMPERATURE

INFO

The PSU's efficiency under high ambient temperatures with 115V and 230V input. For this graph the results of the 10-110% load regulation table are used

5VSB EFFICIENCY

INFO

This graph depicts the efficiency levels of the 5VSB rail with 115V and 230V input

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

 $\ensuremath{\mathsf{>}}$ The link to the original test results document should be provided in any case

PAGE 5/8

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EVGA SuperNOVA 550 G3

10-110% LOAD TESTS										
Test #	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
-	2.713A	1.975A	1.992A	0.985A	54.789	04 77 20/	1222	21.7	38.00°C	0.934
1	12.235V	5.065V	3.310V	5.075V	64.630	84.773%	1233	31.7	39.93°C	115.09V
2	6.453A	2.960A	2.987A	1.181A	109.812	00.0010/	1000	22.1	38.43°C	0.966
2	12.232V	5.068V	3.312V	5.068V	123.535	88.891%	1263	32.1	40.73°C	115.09V
2	10.533A	3.457A	3.500A	1.381A	164.897	00.2110/	1070	22.2	38.68°C	0.979
3	12.229V	5.066V	3.311V	5.060V	182.790	90.211%	1279	32.2	41.51°C	115.09V
	14.609A	3.943A	3.984A	1.581A	219.781	00 0000	1200	22.4	39.01°C	0.986
4	12.227V	5.066V	3.311V	5.054V	242.354	90.686%	1300	32.4	42.29°C	115.09V
F	18.350A	4.939A	4.977A	1.781A	274.795	00.0750/		22.1	39.31°C	0.989
5	12.223V	5.068V	3.312V	5.047V	303.056	90.675%	1340	33.1	43.25°C	115.09V
C	22.094A	5.917A	5.974A	1.982A	329.746	00.26.40/	1000	34.1	40.55°C	0.991
6	12.219V	5.069V	3.314V	5.039V	364.908	90.364%	1380		44.73°C	115.09V
-	25.844A	6.908A	6.965A	2.185A	384.785	00 7460/	1442	20.0	41.45°C	0.993
7	12.215V	5.069V	3.315V	5.032V	428.748	89.746%	1443	36.8	46.55°C	115.10V
0	29.589A	7.892A	7.958A	2.386A	439.702	00.1500/	1505	0.55	42.21°C	0.993
8	12.211V	5.070V	3.316V	5.025V	493.218	89.150%	1505	37.9	48.26°C	115.10V
	33.774A	8.388A	8.471A	2.386A	494.812	00.4620/	1570	27.6	43.73°C	0.994
9	12.205V	5.070V	3.316V	5.022V	559.349	88.462%	1572	37.6	50.38°C	115.10V
10	37.699A	8.877A	8.954A	2.996A	549.655	07 7000/	1641	20.0	44.96°C	0.995
10	12.201V	5.070V	3.316V	5.004V	626.536	87.729%	1641	39.0	52.23°C	115.10V
11	42.220A	8.883A	8.957A	2.997A	604.615	07.0050/	1700	20.0	46.35°C	0.995
11	12.196V	5.068V	3.315V	5.001V	694.759	87.025%	1728	39.9	54.53°C	115.10V
	0.100A	13.020A	13.004A	0.005A	111.096	04.2620/	1505	0.70	42.26°C	0.969
CL1	12.219V	5.097V	3.344V	5.097V	131.688	84.363%	1505	37.9	46.13°C	115.12V
	45.789A	1.002A	1.003A	1.002A	572.195	00.2020/	1500	20.2	44.28°C	0.995
CL2	12.203V	5.048V	3.293V	5.060V	648.157	88.280%	1593	38.3	51.95°C	115.10V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 6/8

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EVGA SuperNOVA 550 G3

20-80W LOAD TESTS									
Test #	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	PF/AC Volts
1	1.196A	0.491A	0.480A	0.196A	19.712	74.0.400/	1105	20.1	0.770
1	12.240V	5.063V	3.307V	5.097V	26.301	74.948%	1165	29.1	115.08V
2	2.412A	0.979A	0.996A	0.391A	39.760	02 2200/	1186	29.5	0.893
2	12.237V	5.064V	3.308V	5.092V	47.709	83.339%			115.08V
2	3.632A	1.473A	1.509A	0.586A	59.874	06 2000/	1107	29.9	0.949
3	12.236V	5.064V	3.308V	5.086V	69.315	86.380%	1197		115.08V
	4.841A	1.974A	1.992A	0.786A	79.808	07 (010/		20.0	0.954
4	12.234V	5.065V	3.310V	5.079V	91.010	87.691%	1220	1220 30.9	

RIPPLE MEASUREMENTS

RIPPLE MEASUREMENTS								
Test	12V	5V	3.3V	5VSB	Pass/Fail			
10% Load	4.6 mV	3.9 mV	4.7 mV	6.4 mV	Pass			
20% Load	5.7 mV	4.7 mV	4.9 mV	7.6 mV	Pass			
30% Load	7.7 mV	5.4 mV	5.4 mV	8.7 mV	Pass			
40% Load	8.1 mV	6.1 mV	6.1 mV	9.8 mV	Pass			
50% Load	8.3 mV	6.8 mV	6.5 mV	11.3 mV	Pass			
60% Load	8.9 mV	7.6 mV	6.8 mV	12.7 mV	Pass			
70% Load	8.9 mV	8.8 mV	7.7 mV	17.2 mV	Pass			
80% Load	9.3 mV	9.9 mV	8.6 mV	19.1 mV	Pass			
90% Load	9.5 mV	10.5 mV	8.8 mV	19.1 mV	Pass			
100% Load	10.0 mV	11.5 mV	9.9 mV	22.7 mV	Pass			
110% Load	10.5 mV	12.5 mV	10.6 mV	26.3 mV	Pass			
Crossload 1	6.3 mV	6.2 mV	6.9 mV	21.0 mV	Pass			
Crossload 2	9.8 mV	11.3 mV	8.9 mV	18.0 mV	Pass			

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 7/8

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EVGA SuperNOVA 550 G3

HOLD-UP TIME & POWER OK SIGNAL (230V)				
Hold-Up Time (ms)	18.26			
AC Loss to PWR_OK Hold Up Time (ms)	15.70			
PWR_OK Inactive to DC Loss Delay (ms)	2.56			

All data and graphs included in this test report can be used by any individual on the following conditions: > It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 8/8

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted