

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

EVGA 850 GQ

Lab ID#: 93 Receipt Date: Apr 5, 2018 Test Date: Apr 15, 2018

Report:

Report Date: Apr 19, 2018

DUT INFORMATION			
Brand	EVGA		
Manufacturer (OEM)	FSP		
Series	GQ		
Model Number			
Serial Number	1603160808800964		
DUT Notes	Retested on 02/06/2018		

DUT SPECIFICATIONS				
Rated Voltage (Vrms)	100-240			
Rated Current (Arms)	14			
Rated Frequency (Hz)	50-60			
Rated Power (W)	850			
Туре	ATX12V			
Cooling	135 mm Fluid Dynamic Bearing (MGA13512XF-025)			
Semi-Passive Operation	✓ (selectable)			
Cable Design	Semi Modular			

TEST EQUIPMENT

	Chroma 6314A x2	Chroma 63601-5 x2	
Electronic Loads	63123A x6	Chroma 63600-2	
Election lic Loads	63102A	63640-80-80 x10	
	63101A	63610-80-20	
AC Sources	Chroma 6530, Chroma 61604		
Power Analyzers	N4L PPA1530, N4L PPA5530		
Oscilloscopes	Picoscope 4444 & 3424, Keysight DSOX3024A, Rigol DS2072A		
Voltmeter	Keithley 2015 THD 6.5 Digit		
Sound Analyzer	Bruel & Kjaer 2250-L G4		
Microphone	Bruel & Kjaer Type 4189		
Data Loggers	Picoscope TC-08 x2, Labjack U3-HV x2		

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Anex

EVGA 850 GQ

RESULTS	
Temperature Range (°C /°F)	30-32 / 86-89.6
ErP Lot 3/6 Ready	1
(EU) No 617/2013 Compliance	

115V				
Average Efficiency	88.715%			
Efficiency With 10W (\leq 500W) or 2% (>500W)	0.000			
Average Efficiency 5VSB	77.876%			
Standby Power Consumption (W)	0.1069220			
Average PF	0.984			
Avg Noise Output	24.63 dB(A)			
Efficiency Rating (ETA)	GOLD			
Noise Rating (LAMBDA)	А			

230V				
Average Efficiency	90.709%			
Average Efficiency 5VSB	77.741%			
Standby Power Consumption (W)	0.1961680			
Average PF	0.964			
Avg Noise Output	30.05 dB(A)			
Efficiency Rating (ETA)	GOLD			
Noise Rating (LAMBDA)	Standard++			

POWER SPECIFICATIONS

Rail		3.3V	5V	12V	5VSB	-12V
Mary Davies	Amps	24	24	70.8	3	0.5
Max. Power	Watts	120		849.6	15	6
Total Max. Power (W)		850				

HOLD-UP TIME & POWER OK SIGNAL (230V)

Hold-Up Time (ms)	28.24
AC Loss to PWR_OK Hold Up Time (ms)	24.06
PWR_OK Inactive to DC Loss Delay (ms)	4.18

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 2/16

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EVGA 850 GQ

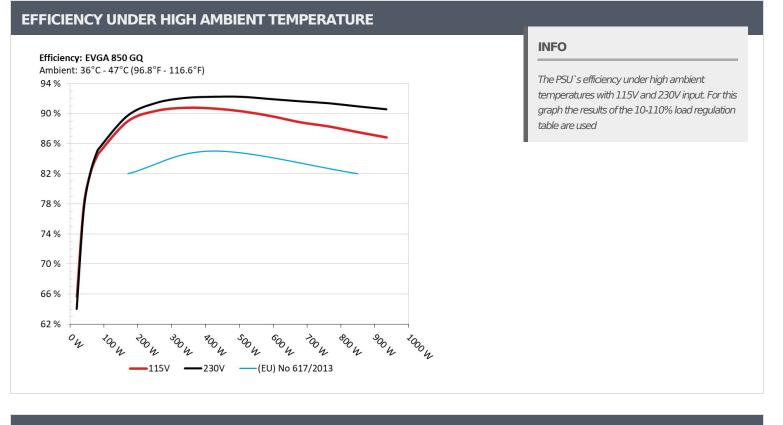
Anex

CABLES AND CONNECTORS

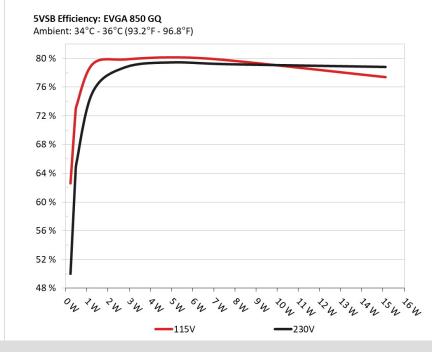
Description	Cable Count	Connector Count (Total)	Gauge
ATX connector 20+4 pin (600mm)	1	1	18-24AWG
Modular Cables			
4+4 pin EPS12V (650mm)	2	2	18AWG
6+2 pin PCIe (600mm+100mm)	4	8	18AWG
SATA (550mm+100mm+100mm)	1	3	18AWG
4 pin Molex (550mm+100mm+100mm)	1	3	18AWG
FDD Adapter (+100mm)	1	2	22AWG

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics


> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted



Anex

EVGA 850 GQ

5VSB EFFICIENCY

INFO

This graph depicts the efficiency levels of the 5VSB rail with 115V and 230V input

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

 $\ensuremath{\mathsf{>}}$ The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EVGA 850 GQ

5VSB EFFICIENCY -115V (ERP LOT 3/6 & CEC)				
Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
	0.045A	0.231	- C2 C020/	0.031
1	5.129V	0.369	62.602%	115.37V
2	0.090A	0.462		0.052
2	5.127V	0.639	72.300%	115.38V
_	0.550A	2.813	79.847%	0.236
3	5.113V	3.523		115.37V
	1.000A	5.100	80.138%	0.338
4	5.099V	6.364		115.37V
-	1.500A	7.627	70 7 470/	0.401
5	5.084V	9.564	79.747%	115.36V
6	3.000A	15.114	77 2050/	0.481
	5.038V	19.531	77.385%	115.35V

5VSB EFFICIENCY -230V (ERP LOT 3/6 & CEC)

Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
	0.045A	0.231	50.000%	0.014
1	5.128V	0.462		230.92V
2	0.090A	0.462	67 7740/	0.021
2	5.127V	0.725	63.724%	230.92V
3	0.550A	2.813	78.751%	0.099
	5.113V	3.572		230.92V
_	1.000A	5.099	79.436%	0.166
4	5.098V	6.419		230.92V
5	1.500A	7.628	79.186%	0.227
	5.084V	9.633		230.92V
6	3.000A	15.116	78.799%	0.337
	5.038V	19.183		230.91V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 5/16

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

EVGA 850 GQ

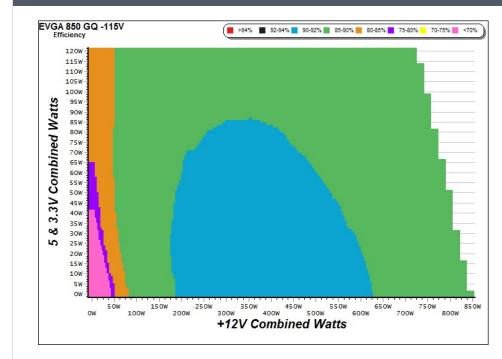
115V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

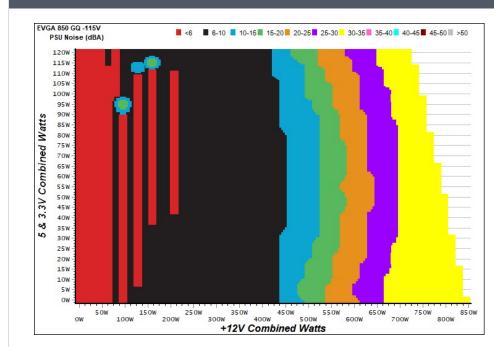
> The link to the original test results document should be provided in any case

PAGE 6/16


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EVGA 850 GQ


EFFICIENCY GRAPH 115V

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

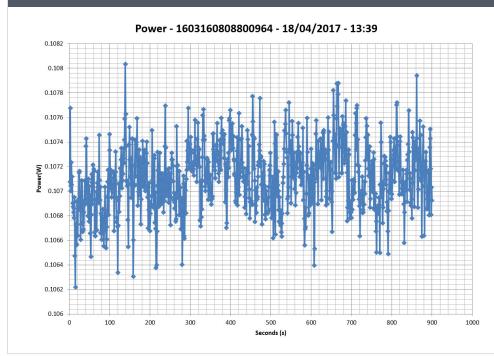
NOISE GRAPH 115V

INFO

The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

- > It should be mentioned that the test results are provided by Cybenetics
- > The link to the original test results document should be provided in any case


PAGE 7/16

Anex

EVGA 850 GQ

VAMPIRE POWER -115V

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EVGA 850 GQ

10-110% LOAD TESTS 115V											
Test #	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts	
1	5.235A	1.994A	2.000A	0.981A	84.823	04 7010/	500	11.8	37.77°C	0.975	
1	12.083V	5.005V	3.299V	5.087V	100.050	84.781%	520		40.96°C	115.02V	
2	11.518A	2.994A	3.004A	1.179A	169.695	00.0020/	520	11.8	37.98°C	0.989	
	12.055V	5.000V	3.294V	5.072V	190.704	88.983%		11.0	41.49°C	115.02V	
2	18.170A	3.507A	3.523A	1.380A	254.969	00 20 40/	520	11.0	38.50°C	0.991	
3	12.046V	4.996V	3.290V	5.059V	282.096	90.384%	520	11.8	42.36°C	115.03V	
4	24.828A	4.004A	4.014A	1.583A	339.795	90.782%	520	11.8	38.99°C	0.995	
	12.028V	4.991V	3.287V	5.045V	374.299				43.79°C	115.03V	
5	31.127A	5.007A	5.025A	1.787A	424.698	90.685%	725	18.5	39.73°C	0.997	
	12.023V	4.988V	3.282V	5.031V	468.321				44.73°C	115.13V	
6	37.461A	6.019A	6.043A	1.991A	509.688	90.296%	998	27.9	40.53°C	0.998	
	12.010V	4.984V	3.276V	5.015V	564.466				45.63°C	115.05V	
7	43.794A	7.025A	7.060A	2.199A	594.627		1320	34.2	41.58°C	0.999	
7	12.001V	4.978V	3.271V	4.998V	663.158	89.666%			46.90°C	115.04V	
0	50.126A	8.045A	8.081A	2.405A	679.613	00.0520/	1600	39.9	42.71°C	0.999	
8	11.994V	4.974V	3.267V	4.983V	764.873	88.853%			48.18°C	115.08V	
0	56.915A	8.547A	8.612A	2.411A	764.652	00 2020/		41.6	43.97°C	0.999	
9	11.984V	4.971V	3.263V	4.975V	866.051	88.292%	1690		50.19°C	115.06V	
10	63.436A	9.063A	9.110A	3.031A	849.487	07 5 400/	1000	41.0	45.43°C	0.998	
10	11.977V	4.969V	3.259V	4.946V	970.374	87.542%	1690	41.6	52.13°C	115.04V	
11	70.594A	9.064A	9.120A	3.034A	934.422	06.0410/	1000		46.60°C	0.998	
11	11.966V	4.967V	3.255V	4.940V	1076.019	86.841%	1690	41.6	53.83°C	115.06V	
0.1	0.101A	14.024A	14.003A	0.004A	117.079	01 (200)	700	17.0	42.64°C	0.982	
CL1	12.071V	4.992V	3.273V	5.086V	143.426	81.630%	700	17.6	46.79°C	115.06V	
	70.793A	1.002A	1.003A	1.002A	860.645	00.01.00/	1.000	41.0	43.78°C	0.998	
CL2	11.969V	4.981V	3.280V	5.032V	975.640	88.213%	1690	41.6	50.26°C	115.06V	

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EVGA 850 GQ

20-80W LOAD TESTS 115V											
12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	PF/AC Volts			
1.211A	0.489A	0.480A	0.196A	19.701	65.633%	0	<6.0	0.652			
12.107V	5.009V	3.304V	5.121V	30.017		U		115.00V			
2.441A	0.989A	0.997A	0.391A	39.794	77.592%	0	<6.0	0.715			
12.104V	5.009V	3.305V	5.112V	51.286		0		115.00V			
3.674A	1.485A	1.515A	0.586A	59.870	00.000/	520	11.8	0.775			
12.097V	5.007V	3.301V	5.101V	72.907	82.118%	520		115.02V			
4.903A	1.994A	2.000A	0.785A	79.832	04.41.00/	500	11.0	0.972			
12.085V	5.007V	3.299V	5.093V	94.566	84.419%	520	11.8	115.02V			
	12V 1.211A 12.107V 2.441A 12.104V 3.674A 12.097V 4.903A	12V 5V 1.211A 0.489A 12.107V 5.009V 2.441A 0.989A 12.104V 5.009V 3.674A 1.485A 12.097V 5.007V 4.903A 1.994A	12V 5V 3.3V 1.211A 0.489A 0.480A 12.107V 5.009V 3.304V 2.441A 0.989A 0.997A 12.104V 5.009V 3.305V 3.674A 1.485A 1.515A 12.097V 5.007V 3.301V 4.903A 1.994A 2.000A	12V 5V 3.3V 5VSB 1.211A 0.489A 0.480A 0.196A 12.107V 5.009V 3.304V 5.121V 2.441A 0.989A 0.997A 0.391A 12.104V 5.009V 3.305V 5.112V 3.674A 1.485A 1.515A 0.586A 12.097V 5.007V 3.301V 5.101V 4.903A 1.994A 2.000A 0.785A	12V 5V 3.3V 5VSB DC/AC (Watts) 1.211A 0.489A 0.480A 0.196A 19.701 12.107V 5.009V 3.304V 5.121V 30.017 2.441A 0.989A 0.997A 0.391A 39.794 12.104V 5.009V 3.305V 5.112V 51.286 3.674A 1.485A 1.515A 0.586A 59.870 12.097V 5.007V 3.301V 5.101V 72.907 4.903A 1.994A 2.000A 0.785A 79.832	12V 5V 3.3V 5VSB DC/AC (Watts) Efficiency 1.211A 0.489A 0.480A 0.196A 19.701 65.633% 12.107V 5.009V 3.304V 5.121V 30.017 65.633% 12.107V 5.009V 3.304V 5.121V 30.017 67.633% 12.104V 0.989A 0.997A 0.391A 39.794 77.592% 12.104V 5.009V 3.305V 5.112V 51.286 77.592% 12.104V 5.009V 3.305V 5.112V 51.286 82.118% 12.097V 5.007V 3.301V 5.101V 72.907 82.118% 4.903A 1.994A 2.000A 0.785A 79.832 84.419%	12V5V3.3V5VSBDC/AC (Watts)EfficiencyFan Speed (RPM)1.211A0.489A0.480A0.196A19.701 $\mathbf{65.633\%}$ 0 12.107V5.009V3.304V5.121V30.017 $\mathbf{65.633\%}$ 0 2.441A0.989A0.997A0.391A39.794 $\mathbf{77.592\%}$ 0 12.104V5.009V3.305V5.112V51.286 $\mathbf{77.592\%}$ 0 12.104V5.009V3.305V5.112V51.286 9.870 $\mathbf{82.118\%}$ 520 12.097V5.007V3.301V5.101V72.907 $\mathbf{84.419\%}$ 520	12V5V3.3V5VSBDC/AC (Watts)EfficiencyFan Speed (RPM)PSU Noise (dB[A])1.211A0.489A0.480A0.196A19.701 $\partial_{0.301}$ </td			

RIPPLE MEASUREMENTS 115V

Test	12V	5V	3.3V	5VSB	Pass/Fail
10% Load	10.4 mV	10.5 mV	13.5 mV	22.6 mV	Pass
20% Load	13.9 mV	11.2 mV	14.5 mV	27.8 mV	Pass
30% Load	13.4 mV	12.2 mV	14.8 mV	18.4 mV	Pass
40% Load	14.2 mV	12.1 mV	15.7 mV	18.7 mV	Pass
50% Load	14.8 mV	13.8 mV	15.6 mV	21.8 mV	Pass
60% Load	15.4 mV	13.9 mV	15.6 mV	23.2 mV	Pass
70% Load	16.9 mV	15.5 mV	17.0 mV	27.5 mV	Pass
80% Load	18.7 mV	16.5 mV	18.7 mV	30.4 mV	Pass
90% Load	18.5 mV	17.6 mV	20.5 mV	31.0 mV	Pass
100% Load	21.7 mV	19.3 mV	22.1 mV	32.7 mV	Pass
110% Load	23.0 mV	21.9 mV	25.1 mV	35.1 mV	Pass
Crossload 1	10.3 mV	12.2 mV	14.1 mV	15.6 mV	Pass
Crossload 2	21.0 mV	18.6 mV	21.9 mV	29.7 mV	Pass

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 10/16

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

EVGA 850 GQ

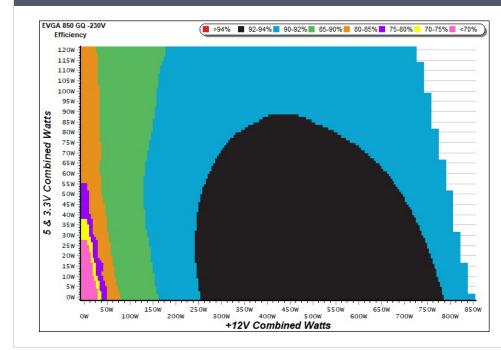
230V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

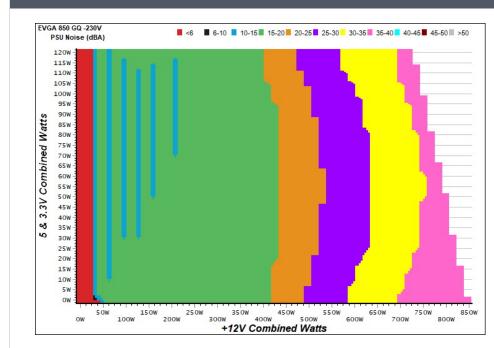
> The link to the original test results document should be provided in any case

PAGE 11/16


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EVGA 850 GQ


EFFICIENCY GRAPH 230V

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH 230V

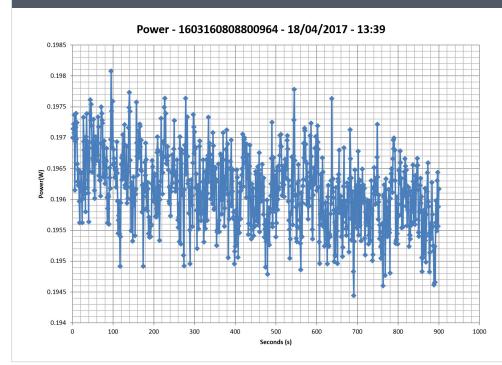
INFO

The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

- > It should be mentioned that the test results are provided by Cybenetics
- > The link to the original test results document should be provided in any case

PAGE 12/16


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EVGA 850 GO

Anex

VAMPIRE POWER -230V

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EVGA 850 GQ

10-110% LOAD TESTS 230V											
Test #	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts	
1	5.224A	1.993A	1.994A	0.982A	84.576		680	16.9	37.98°C	0.696	
T	12.060V	5.010V	3.305V	5.091V	99.087	85.355%			43.21°C	230.65V	
2	11.485A	2.993A	2.994A	1.182A	169.101	89.709%	680	16.9	38.48°C	0.948	
Z	12.035V	5.008V	3.303V	5.078V	188.500	69.709%			43.84°C	230.59V	
2	18.129A	3.494A	3.482A	1.382A	254.188	01 4240/	705	105	39.38°C	0.971	
3	12.036V	5.007V	3.300V	5.066V	278.033	91.424%	725	18.5	45.17°C	230.63V	
4	24.791A	3.994A	4.000A	1.583A	339.391	02.0020/	065	27.3	40.44°C	0.981	
4	12.029V	5.005V	3.298V	5.053V	368.571	92.083%	965		46.62°C	230.57V	
F	31.122A	4.995A	5.006A	1.786A	424.697	92.239%	1230	32.8	41.10°C	0.986	
5	12.024V	5.003V	3.295V	5.040V	460.433				47.54°C	230.49V	
G	37.378A	5.999A	6.013A	1.989A	509.229	02 22(0)	1445	39.2	41.61°C	0.990	
6	12.024V	5.001V	3.292V	5.028V	552.156	92.226%			48.44°C	230.44V	
7	43.724A	6.999A	7.023A	2.194A	594.562	01 0270/	1752	43.0	42.91°C	0.993	
/	12.018V	4.999V	3.289V	5.014V	646.774	91.927%			49.98°C	230.30V	
8	50.050A	8.002A	8.031A	2.400A	679.895	01 6260/	1835	44.4	44.16°C	0.994	
0	12.018V	4.998V	3.287V	5.001V	741.949	91.636%			51.75°C	230.40V	
0	56.780A	8.505A	8.524A	2.403A	764.819	01 2760/	1835	44.4	44.78°C	0.995	
9	12.017V	4.997V	3.284V	4.994V	836.998	91.376%			52.78°C	230.34V	
10	63.252A	9.008A	9.046A	3.020A	849.659	00.005%	1005	44.4	45.34°C	0.995	
10	12.015V	4.995V	3.282V	4.968V	934.046	90.965%	1835		53.98°C	230.27V	
11	70.313A	9.008A	9.052A	3.024A	934.431	00 5760/	1025		46.36°C	0.996	
11	12.014V	4.995V	3.280V	4.962V	1031.649	90.576%	1835	44.4	55.68°C	230.30V	
CI 1	0.724A	14.000A	13.997A	0.000A	125.023	02 2570/	1240	33.6	43.68°C	0.929	
CL1	12.047V	5.009V	3.299V	5.094V	150.166	83.257%	1240		48.51°C	230.80V	
CL2	70.829A	0.999A	0.996A	1.000A	864.251	01 4470/	1025		45.19°C	0.996	
υz	12.014V	4.998V	3.287V	5.045V	945.084	91.447%	1835	44.4	52.40°C	230.37V	

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EVGA 850 GQ

20-80W LOAD TESTS 230V											
Test #	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	PF/AC Volts		
1	1.207A	0.491A	0.481A	0.196A	19.659	64.0050/	680	16.9	0.433		
	12.089V	5.012V	3.305V	5.120V	30.289	64.905%			230.25V		
2	2.444A	0.990A	0.997A	0.391A	39.769	77 2 400/	680	16.9	0.536		
2	12.085V	5.010V	3.304V	5.111V	51.482	77.248%			230.26V		
2	3.679A	1.486A	1.513A	0.586A	59.854	02 2210/	COO	16.9	0.685		
3	12.077V	5.009V	3.302V	5.101V	72.708	82.321%	680		230.24V		
4	4.912A	1.995A	1.999A	0.785A	79.794		<u> </u>	16.0	0.701		
	12.060V	5.007V	3.299V	5.093V	93.848	85.025%	680	16.9	230.24V		
	12.060V	5.007V	3.299V	5.093V	93.848				230.24V		

RIPPLE MEASUREMENTS 230V

Test	12V	5V	3.3V	5VSB	Pass/Fail
10% Load	17.0 mV	9.6 mV	9.3 mV	16.0 mV	Pass
20% Load	23.7 mV	10.5 mV	10.3 mV	17.6 mV	Pass
30% Load	26.9 mV	11.5 mV	11.1 mV	19.7 mV	Pass
40% Load	27.9 mV	13.2 mV	15.8 mV	19.7 mV	Pass
50% Load	31.0 mV	15.0 mV	17.7 mV	20.1 mV	Pass
60% Load	37.7 mV	17.3 mV	34.0 mV	21.8 mV	Pass
70% Load	36.5 mV	19.7 mV	16.9 mV	32.1 mV	Pass
80% Load	39.2 mV	21.4 mV	17.9 mV	27.9 mV	Pass
90% Load	41.0 mV	23.9 mV	28.2 mV	30.1 mV	Pass
100% Load	45.1 mV	29.9 mV	33.9 mV	28.4 mV	Pass
110% Load	47.2 mV	31.7 mV	39.7 mV	30.2 mV	Pass
Crossload 1	36.2 mV	17.4 mV	11.9 mV	15.1 mV	Pass
Crossload 2	37.4 mV	26.8 mV	38.9 mV	33.9 mV	Pass

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 15/16

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

EVGA 850 GO

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

www.cybenetics.com -info@cybenetics.com

CYBENETICS LTD Syrou 6, Latsia, 2231, Nicosia Cyprus