Anex

Deepcool PN1200M

Lab ID\#: DC12002412	
Receipt Date: Mar 29, 2024	
Test Date: Apr 12, 2024	
DUT IN F OR MATION	
Brand	Deepcool
Manufacturer (OEM)	CWT
Series	PN-M
Model Number	PNC00M-FC
Serial Number	2024000025
DUT Notes	

Report: 24PS2412A
Report Date: Apr 15, 2024

DUT SPECIFICATIONS	
Rated Voltage (Vms)	$100-240$
Rated Current (Arms)	$15-7$
Rated Frequency (Hz)	$50-60$
Rated Power (W)	1200
Type	ATX12V
Cooling	135 mm Fluid Dynamic Bearing Fan (HA13525H12SF-Z)
Semi-Passive Operation	x
Cable Design	Fully Modular

TEST EQUIPMENT

	Chroma 63601-5 x2 Chroma 63600-2 Electronic Loads
AC Sources	Chro-80-80 $\times 10$

Anex

Deepcool PN1200M

RESULTS

Temperature Range $\left({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right)$	$30-32 / 86-89.6$
ErP Lot 3/6 Ready	\checkmark
(EU) No 617/2013 Compliance	\checkmark
ALPM (Altemative Low Power Mode) compatible	\checkmark
ATX v3.1 PSU Power Excursion	\checkmark

$\mathbf{1 1 5} \mathbf{~ V}$	
Average Efficiency	88.040%
Efficiency With 10W ($\leq 500 \mathrm{~W}$) or 2\% ($>500 \mathrm{~W}$)	75.306
Average Efficiency 5VSB	78.313%
Standby Power Consumption (W)	0.0376000
Average PF	0.988
Avg Noise Output	$33.42 \mathrm{~dB}(\mathrm{~A})$
Efficiency Rating (ETA)	GOLD
Noise Rating (LAMBDA)	Standard++

$\mathbf{2 3 0 V}$	
Average Efficiency	90.320%
Average Efficiency 5VSB	77.522%
Standby Power Consumption (W)	0.0858000
Average PF	0.965
Avg Noise Output	$32.34 \mathrm{~dB}(\mathrm{~A})$
Efficiency Rating (ETA)	GOLD
Noise Rating (LAMBDA)	Standard++

POWER SPECIFICATIONS					
Rail		$\mathbf{3 . 3 V}$	$\mathbf{5 V}$	$\mathbf{1 2 V}$	$\mathbf{5 V S B}$
	Max. Power	Amps	22	22	100

HOLD-UP TIME \& POWER OK SIGNAL (230V)

Hold-Up Time (ms)	15.2
AC Loss to PWR_OK Hold Up Time (ms)	13
PWR_OK Inactive to DC Loss Delay (ms)	2.2

All data and graphs included in this test report can be used by any individual on the following conditions:
> It should be mentioned that the test results are provided by Cybenetics
PAGE 2/17
> The link to the original test results document should be provided in any case

Anex

Deepcool PN1200M

CABLES AND CONNECTORS

Modular Cables				
Description	Cable Count	Connector Count (Total)	Gauge	In Cable Capacitors
ATX connector $20+4$ pin (540mm)	1	1	18AWG	No
$4+4$ pin EPS12V (700 mm)	2	2	16AWG	No
6+2 pin PCle (550 mm)	3	3	16AWG	No
$12+4$ pin PCle (600 mm) (600W)	1	1	16-24AWG	No
SATA ($450 \mathrm{~mm}+120 \mathrm{~mm}+120 \mathrm{~mm}+120 \mathrm{~mm}$) / 4-pin Molex (+120 mm)	2	8/2	18AWG	No

Anex

General Data	
Manufacturer (OEM)	CWT
Platform	CSZ
PCB Type	Double-Sided
Primary Side	
Transient Filter	4 X Y caps, $1 \times \mathrm{X}$ caps, $2 \times$ CM chokes, $1 \times$ MOV
Inrush Protection	1x NTC Thermistor SCK-207R0 (7 Ohm @ $25^{\circ} \mathrm{C}$) \& Relay
Bridge Rectifier(s)	$2 \times$ WNB2560M (600V, 25A @ $127^{\circ} \mathrm{C}$)
APFC MOSFETs	3 x Infineon IPW60R099P6 (650V, 24A @ 100 ${ }^{\circ} \mathrm{C}, \mathrm{Rds}$ (on): 0.0990hm)
APFC Boost Diode	1x OnSemi FFSP1665A (650V, 16A @ 135 ${ }^{\circ} \mathrm{C}$)
Bulk Cap(s)	1x Rubycon (420V, 820uF , 2000h @ 105 ${ }^{\circ} \mathrm{C}$, MXE)
Main Switchers	$2 \mathrm{Infineon} \mathrm{IPW60R099P6} \mathrm{(650V}, \mathrm{24A} \mathrm{@} \mathrm{100}{ }^{\circ} \mathrm{C}, \mathrm{Rds}$ (on): 0.0990hm)
APFC Controller	Champion 6500UNX \& $1 \times$ Sync Power SPN5003 (No load consumption FET)
Resonant Controller	Champion CU6901VAC
Topology	Primary side: APFC, Half-Bridge \& ШС converter Secondary side: Synchronous Rectification \& DC-DC converters
Secondary Side	
+12V MOSFETs	10x Infineon BSC014206NS (60V, 152A @ 100 ${ }^{\circ} \mathrm{C}$, Rds(on): 1.45 mOhm)
5 V \& 3.3V	DC-DC Converters: $2 x$ UBIQ QM3054M6 (30V, 61A @ $100^{\circ} \mathrm{C}$, Rds(on): 4.8mOhm) \& $2 x$ UBIQ QN3107M6N (30V, 70A @ $100^{\circ} \mathrm{C}$, Rds(on): 2.6 mOhm) PWM Controller(s): uPI-Semi uP3861P
Filtering Capacitors	Electrolytic: 1x Elite (2,000 @ $105^{\circ} \mathrm{C}, \mathrm{PF}$), $7 x$ Chengx ($6-10000$ @ $105^{\circ} \mathrm{C}, \mathrm{GR}$), Polymer: 15x Apaq , 10x Elite , 2 x
Supervisor IC	Weltrend WT7502 (OVD ,PGO, UVD,)
Fan Model	Hong Hua HA13525H12SF-Z (135mm, 12V, 0.5A, Fluid Dynamic Bearing Fan)
5VSB/12VSB Circuit	
Low Side Rectifier	Chongqing-Pingwei-Tech R1MF
Standby PWM Controller	On-Bright OB2365T

Anex

Deepcool PN1200M

 > It should be mentioned that the test results are provided by Cybenetics

Anex

Deepcool PN1200M

5VSB EFFICIENCY -115V (ERP LOT 3/6 \& CEC)

Test \#	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
1	0.045A	0.226W	70.368\%	0.032
	5.03 V	0.321W		114.89 V
2	0.09A	0.453W	75.12\%	0.059
	5.028 V	0.603W		114.88 V
3	0.55A	2.755 W	79.087\%	0.267
	5.01 V	3.483W		114.88 V
4	1A	4.992W	78.93\%	0.356
	4.992V	6.325 W		114.87V
5	1.5A	7.459W	78.991\%	0.417
	4.972V	9.443W		114.87V
6	3A	14.736W	76.815\%	0.494
	4.912 V	19.184W		114.87 V

5VSB EFFICIENCY -230V (ERP LOT 3/6 \& CEC)

Test \#	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
1	0.045A	0.226W	58.182\%	0.011
	5.03 V	0.389w		229.95 V
2	0.09A	0.453W	66.157\%	0.02
	5.028 V	0.686W		229.94 V
3	0.55A	2.755W	76.797\%	0.101
	5.009 V	3.587 W		229.94 V
4	1A	4.992W	78.095\%	0.168
	4.991V	6.392W		229.94 V
5	1.5A	7.458W	78.607\%	0.228
	4.971V	9.489W		229.94 V
6	3A	14.734W	78.847\%	0.324
	4.911V	18.686W		229.94 V

All data and graphs included in this test report can be used by any individual on the following conditions:
> It should be mentioned that the test results are provided by Cybenetics
PAGE 6/17
> The link to the original test results document should be provided in any case

Anex

115 V

Anex

Deepcool PN1200M

VAMPIRE POWER -115V

Detailed Results

	Average	Min	Limit Min	Max	Limit Max	Result
Mains Voltage RMS:	114.87 V	114.81 V	113.85 V	114.92 V	116.15 V	PASS
Mains Frequency:	60.00 Hz	59.98 Hz	59.40 Hz	60.02 Hz	60.60 Hz	PASS
Mains Voltage CF:	1.419	1.417	1.340	1.422	1.490	PASS
Mains Voltage THD:	0.16 \%	0.09 \%	N/A	0.29 \%	2.00 \%	PASS
Real Power:	0.038 W	0.033 W	N/A	0.042 W	N/A	N/A
Apparent Power:	10.067 W	10.050 W	N/A	10.089 W	N/A	N/A
Power Factor:	0.004	N/A	N/A	N/A	N/A	N/A

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 \& IEC62301 test limits for standby power software testing

10-110\% LOAD TESTS 115V

Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
10\%	8.089A	1.981A	1.973A	1.005 A	119.997	83.724\%	406	<6.0	$40.18^{\circ} \mathrm{C}$	0.983
	12.164V	5.05 V	3.346 V	4.977 V	143.322				$44.44{ }^{\circ} \mathrm{C}$	114.83V
20\%	17.192A	2.974A	2.963A	1.21A	239.961	89.402\%	408	<6.0	$40.91^{\circ} \mathrm{C}$	0.99
	12.160V	5.045 V	3.342 V	4.96V	268.409				$45.49{ }^{\circ} \mathrm{C}$	114.79 V
30\%	26.623A	3.472A	3.461A	1.417A	359.237	90.594\%	408	<6.0	$41.25^{\circ} \mathrm{C}$	0.983
	12.139 V	5.041V	3.338 V	4.942 V	396.539				$46.3{ }^{\circ} \mathrm{C}$	114.76 V
40\%	36.165A	3.972A	3.959A	1.615A	479.623	90.648\%	409	<6.0	$41.74{ }^{\circ} \mathrm{C}$	0.986
	12.123V	5.037 V	3.334 V	4.953 V	529.102				$47.27^{\circ} \mathrm{C}$	114.71V
50\%	45.343A	4.97A	4.956A	1.823A	599.352	90.217\%	409	<6.0	$42.29{ }^{\circ} \mathrm{C}$	0.989
	12.104V	5.032 V	3.33 V	4.937V	664.347				$48.31{ }^{\circ} \mathrm{C}$	114.67V
60\%	54.616A	5.97A	5.955A	2A	719.721	89.498\%	776	17.4	$42.89{ }^{\circ} \mathrm{C}$	0.991
	12.085 V	5.027 V	3.325 V	4.921 V	804.178				$49.45^{\circ} \mathrm{C}$	114.62 V
70\%	63.859A	6.971A	6.958A	2.244A	839.588	88.715\%	1165	30.5	$43.19{ }^{\circ} \mathrm{C}$	0.992
	12.065 V	5.022 V	3.32 V	4.902 V	946.387				$50.2{ }^{\circ} \mathrm{C}$	114.58 V
80\%	73.198A	7.971A	7.962A	2.353A	959.548	87.848\%	1567	40.5	$43.83{ }^{\circ} \mathrm{C}$	0.993
	12.045 V	5.018 V	3.315 V	4.889 V	1092.29				$51.98^{\circ} \mathrm{C}$	114.54V
90\%	82.880A	8.475A	8.455A	2.461A	1079.31	86.863\%	1987	48.6	$44.57^{\circ} \mathrm{C}$	0.994
	12.027V	5.014 V	3.311 V	4.876 V	1242.547				$53.61{ }^{\circ} \mathrm{C}$	114.49 V
100\%	92.332A	8.981A	8.98A	3.1A	1199.35	85.799\%	2216	49.4	$45.98{ }^{\circ} \mathrm{C}$	0.994
	12.018 V	5.011V	3.307 V	4.839 V	1397.855				$56.15^{\circ} \mathrm{C}$	114.44V
110\%	101.695A	9.99A	10.084A	3.107A	1319.957	84.562\%	2219	49.4	$46.95^{\circ} \mathrm{C}$	0.995
	12.013 V	5.005 V	3.302 V	4.829 V	1560.943				$57.89{ }^{\circ} \mathrm{C}$	114.39V
CL1	0.114 A	14.393A	14.316A	OA	121.298	78.052\%	412	<6.0	$41.66^{\circ} \mathrm{C}$	0.986
	12.167V	5.016 V	3.332 V	5.008 V	155.41				$53.65{ }^{\circ} \mathrm{C}$	114.83V
CL2	0.114 A	21.993A	OA	OA	111.317	75.405\%	411	<6.0	$41.02^{\circ} \mathrm{C}$	0.985
	12.176V	4.998 V	3.346 V	5.015 V	147.623				$51.94{ }^{\circ} \mathrm{C}$	114.83V
CL3	0.114 A	OA	21.826A	OA	73.982	71.227\%	410	<6.0	$41.13^{\circ} \mathrm{C}$	0.975
	12.174V	5.029 V	3.326 V	5.012 V	103.866				$52.68^{\circ} \mathrm{C}$	114.84 V
CL4	99.768A	OA	0A	0A	1199.907	86.387\%	2215	49.4	$45.78{ }^{\circ} \mathrm{C}$	0.994
	12.027V	5.027 V	3.319 V	4.98 V	1389.008				$58.03{ }^{\circ} \mathrm{C}$	114.45V

All data and graphs included in this test report can be used by any individual on the following conditions:
It should be mentioned that the test results are provided by Cybenetics
PAGE 10/17
\rightarrow The link to the original test results document should be provided in any case

Anex

Deepcool PN1200M

20-80W LOAD TESTS 115V

Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
20W	1.221A	0.494A	0.493A	0.199A	19.998	73.233\%	400	<6.0	$36.59^{\circ} \mathrm{C}$	0.836
	12.160 V	5.057V	3.348 V	5.019 V	27.311				$39.71{ }^{\circ} \mathrm{C}$	114.88V
40W	2.688A	0.692A	0.69A	0.299A	39.999	79.199\%	402	<6.0	$37.6^{\circ} \mathrm{C}$	0.929
	12.157V	5.056 V	3.348 V	5.014 V	50.505				$40.9^{\circ} \mathrm{C}$	114.87V
60W	4.156A	0.89A	0.887A	0.399A	59.999	82.436\%	403	<6.0	$38.38^{\circ} \mathrm{C}$	0.967
	12.155 V	5.055 V	3.348 V	5.008 V	72.784				$42.07^{\circ} \mathrm{C}$	114.86 V
80W	5.616A	1.089A	1.084A	0.5A	79.946	83.092\%	405	<6.0	$39.38^{\circ} \mathrm{C}$	0.976
	12.166 V	5.053 V	3.348 V	5.002V	96.214				$43.24{ }^{\circ} \mathrm{C}$	114.85V

RIPPLE MEASUREMENTS 115V				5VSB	Pass/Fail
Test	12V	5V	3.3V		
10\% Load	12.74mV	12.88mV	13.39mV	7.95 mV	Pass
20\% Load	12.48 mV	12.83 mV	13.60 mV	8.88 mV	Pass
30\% Load	14.59 mV	12.98 mV	13.65 mV	10.53 mV	Pass
40\% Load	15.67 mV	13.35 mV	14.38 mV	10.17 mV	Pass
50\% Load	15.47 mV	16.43 mV	15.00 mV	11.36 mV	Pass
60\% Load	17.73mV	25.19 mV	18.20 mV	12.75 mV	Pass
70\% Load	17.53 mV	29.26 mV	18.87 mV	13.73mV	Pass
80\% Load	18.82 mV	20.14 mV	16.08 mV	15.28 mV	Pass
90\% Load	20.21 mV	19.73 mV	16.70 mV	15.74 mV	Pass
100\% Load	28.72 mV	21.16 mV	19.28 mV	20.68 mV	Pass
110\% Load	28.76 mV	23.06 mV	19.58mV	21.42 mV	Pass
Crossload1	14.94mV	15.31 mV	15.85 mV	7.93 mV	Pass
Crossload2	15.26 mV	22.57 mV	13.44 mV	9.19 mV	Pass
Crossload3	14.85 mV	13.60 mV	19.08mV	9.03 mV	Pass
Crossload4	27.39 mV	19.26 mV	18.68mV	10.42 mV	Pass

All data and graphs included in this test report can be used by any individual on the following conditions:
> It should be mentioned that the test results are provided by Cybenetics
PAGE 11/17
> The link to the original test results document should be provided in any case

Anex

230V

Anex

Deepcool PN1200M

VAMPIRE POWER -230V

Detailed Results

	Average	Min	Limit Min	Max	Limit Max	Result
Mains Voltage RMS:	229.94 V	229.88 V	227.70 V	230.00 V	232.30 V	PASS
Mains Frequency:	50.00 Hz	49.99 Hz	49.50 Hz	50.01 Hz	50.50 Hz	PASS
Mains Voltage CF:	1.417	1.416	1.340	1.419	1.490	PASS
Mains Voltage THD:	0.17 \%	0.14 \%	N/A	0.23 \%	2.00 \%	PASS
Real Power:	0.086 W	0.076 W	N/A	0.123 W	N/A	N/A
Apparent Power:	34.054 W	34.026 W	N/A	34.086 W	N/A	N/A
Power Factor:	0.002	N/A	N/A	N/A	N/A	N/A

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 \& IEC62301 test limits for standby power software testing

10-110\% LOAD TESTS 230V

Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
10\%	8.087A	1.981A	1.972A	1.005A	119.985	84.533\%	406	<6.0	$40.4{ }^{\circ} \mathrm{C}$	0.903
	12.165V	5.049 V	3.346 V	4.977V	141.937				$44.62{ }^{\circ} \mathrm{C}$	229.92V
20\%	17.190A	2.974A	2.962A	1.21 A	239.944	90.536\%	408	<6.0	$40.85^{\circ} \mathrm{C}$	0.956
	12.161V	5.044 V	3.342 V	4.96 V	265.027				$45.36{ }^{\circ} \mathrm{C}$	229.9 V
30\%	26.617A	3.472A	3.46A	1.416A	359.174	92.312\%	408	<6.0	$41.37{ }^{\circ} \mathrm{C}$	0.97
	12.140V	5.04 V	3.338 V	4.943 V	389.087				$46.41{ }^{\circ} \mathrm{C}$	229.88 V
40\%	36.160A	3.972A	3.959A	1.615A	479.565	92.735\%	408	<6.0	$41.64{ }^{\circ} \mathrm{C}$	0.976
	12.123V	5.036 V	3.334 V	4.954 V	517.136				$47.15^{\circ} \mathrm{C}$	229.86 V
50\%	45.337A	4.97A	4.955A	1.823A	599.297	92.656\%	409	<6.0	$42.41{ }^{\circ} \mathrm{C}$	0.979
	12.105V	5.031 V	3.33 V	4.938 V	646.798				$48.51{ }^{\circ} \mathrm{C}$	229.84 V
60\%	54.614A	5.97A	5.956A	2A	719.71	92.242\%	864	21.1	$42.7^{\circ} \mathrm{C}$	0.98
	12.086 V	5.026 V	3.325 V	4.922V	780.245				$49.38^{\circ} \mathrm{C}$	229.83 V
70\%	63.856A	6.971A	6.959A	2.244 A	839.576	91.732\%	1211	31.6	$43.36{ }^{\circ} \mathrm{C}$	0.983
	12.065 V	5.022 V	3.32 V	4.903 V	915.254				$50.39^{\circ} \mathrm{C}$	229.81V
80\%	73.203A	7.973A	7.964A	2.352A	959.576	91.169\%	1570	40.6	$43.74{ }^{\circ} \mathrm{C}$	0.984
	12.045 V	5.017 V	3.315 V	4.889 V	1052.519				$51.8^{\circ} \mathrm{C}$	229.79 V
90\%	82.894A	8.477A	8.458A	2.462A	1079.372	90.573\%	1965	49.4	$44.05^{\circ} \mathrm{C}$	0.985
	12.026 V	5.014 V	3.31V	4.875V	1191.706				$53.16^{\circ} \mathrm{C}$	229.77V
100\%	92.350A	8.983A	8.984A	3.1A	1199.396	89.858\%	2215	49.4	$45.23^{\circ} \mathrm{C}$	0.986
	12.016 V	5.01V	3.306 V	4.839V	1334.777				$55.24{ }^{\circ} \mathrm{C}$	229.74 V
110\%	101.720A	9.992A	10.088A	3.107A	1320.004	89.11\%	2215	49.4	$46.25^{\circ} \mathrm{C}$	0.986
	12.011V	5.004 V	3.301 V	4.828 V	1481.329				$57.13^{\circ} \mathrm{C}$	229.72V
CL1	0.115A	14.397A	14.319A	OA	121.3	79.472\%	410	<6.0	$41.87{ }^{\circ} \mathrm{C}$	0.91
	12.166 V	5.015 V	3.331 V	5.008 V	152.632				$57.31{ }^{\circ} \mathrm{C}$	229.93 V
CL2	0.114 A	21.996A	OA	OA	111.323	76.351\%	409	<6.0	$41.25^{\circ} \mathrm{C}$	0.905
	12.175V	4.998 V	3.346 V	5.015V	145.803				$57.22^{\circ} \mathrm{C}$	229.92V
CL3	0.114 A	OA	21.834A	OA	73.983	71.618\%	408	<6.0	$40.35^{\circ} \mathrm{C}$	0.847
	12.172V	5.029 V	3.325 V	5.012V	103.306				$55.37{ }^{\circ} \mathrm{C}$	229.93 V
CL4	99.805A	OA	OA	OA	1199.976	90.501\%	2214	49.4	$45.21{ }^{\circ} \mathrm{C}$	0.986
	12.023 V	5.028 V	3.318 V	4.979V	1325.937				$61.93{ }^{\circ} \mathrm{C}$	229.74 V

All data and graphs included in this test report can be used by any individual on the following conditions:
It should be mentioned that the test results are provided by Cybenetics
PAGE 15/17
> The link to the original test results document should be provided in any case

Anex

20-80W LOAD TESTS 230V

Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
20W	1.220A	0.494A	0.493A	0.199A	19.991	70.89\%	399	<6.0	$36.71{ }^{\circ} \mathrm{C}$	0.448
	12.159 V	5.057 V	3.347 V	5.02 V	27.967				$39.83^{\circ} \mathrm{C}$	229.96 V
40W	2.688 A	0.692A	0.69A	0.299A	39.993	79.044\%	401	<6.0	$37.45^{\circ} \mathrm{C}$	0.652
	12.158V	5.056 V	3.348 V	5.014 V	50.595				$40.83{ }^{\circ} \mathrm{C}$	229.95 V
60W	4.156A	0.89A	0.887A	0.399A	59.993	82.408\%	402	<6.0	$38.57^{\circ} \mathrm{C}$	0.76
	12.155 V	5.054 V	3.348 V	5.008 V	72.799				$42.22^{\circ} \mathrm{C}$	229.94 V
80W	5.614 A	1.089 A	1.084 A	0.5A	79.934	83.562\%	404	<6.0	$39.08^{\circ} \mathrm{C}$	0.835
	12.166V	5.052 V	3.348 V	5.002 V	96.817				$42.93{ }^{\circ} \mathrm{C}$	229.93 V

RIPPLE MEASUREMENTS 230V				5VSB	Pass/Fail
Test	12V	5V	3.3V		
10\% Load	12.42 mV	11.90 mV	13.75mV	9.03 mV	Pass
20\% Load	13.41 mV	13.14 mV	14.22 mV	9.09 mV	Pass
30\% Load	14.59 mV	13.14 mV	15.00 mV	9.40 mV	Pass
40\% Load	14.23 mV	13.60 mV	13.44 mV	9.39 mV	Pass
50\% Load	15.98mV	14.68 mV	14.01 mV	9.96 mV	Pass
60\% Load	17.79 mV	28.44 mV	18.00 mV	10.48 mV	Pass
70\% Load	17.43 mV	29.57 mV	19.91 mV	14.19 mV	Pass
80\% Load	18.77 mV	19.63 mV	18.72 mV	13.21 mV	Pass
90\% Load	20.16 mV	19.06 mV	18.41 mV	13.78 mV	Pass
100\% Load	28.06 mV	21.30 mV	19.66 mV	16.78 mV	Pass
110\% Load	30.86 mV	22.49 mV	19.35 mV	18.94 mV	Pass
Crossload1	13.64 mV	16.23 mV	15.81mV	8.47 mV	Pass
Crossload2	15.26 mV	24.57 mV	12.98mV	9.34 mV	Pass
Crossload3	13.72 mV	13.35 mV	18.72 mV	9.34 mV	Pass
Crossload4	27.84 mV	18.74 mV	17.93 mV	11.13 mV	Pass

All data and graphs included in this test report can be used by any individual on the following conditions:
> It should be mentioned that the test results are provided by Cybenetics
PAGE 16/17
> The link to the original test results document should be provided in any case

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

Power specifications label

CERTIFICATIONS 115V

Aristeidis Bitziopoulos
Lab Director

All data and graphs included in this test report can be used by any individual on the following conditions:
> It should be mentioned that the test results are provided by Cybenetics
> The link to the original test results document should be provided in any case

