

MSI MPG A1000G PCIE5

Lab ID#: MS10002337

Anex

Receipt Date: Jan 8, 2024 Test Date: Jan 25, 2024

DUT INFORMATION

Brand	MSI
Manufacturer (OEM)	CWT
Series	MPG
Model Number	MPG A1000G PCIE5
Serial Number	
DUT Notes	

Report: 24PS2337A

Report Date: Jan 29, 2024

DUT SPECIFICATIONS				
Rated Voltage (Vrms)	100-240			
Rated Current (Arms)	13			
Rated Frequency (Hz)	50-60			
Rated Power (W)	1000			
Туре	ATX12V			
Cooling	135mm Fluid Dynamic Bearing Fan (HA13525H12SF-Z)			
Semi-Passive Operation	✓ (selectable)			
Cable Design	Fully Modular			

TEST EQUIPMENT

Electronic Loads	Chroma 63601-5 x2 Chroma 63600-2 63640-80-80 x10 63610-80-20
AC Sources	Chroma 6530, APM SP300VAC4000W-P
Power Analyzers	RS HMC8015, N4L PPA1530, N4L PPA5530
Oscilloscopes	Picoscope 4444, Rigol DS7014, Siglent SDS2104X PLUS
Sound Analyzer	Bruel & Kjaer 2270 G4
Microphone	Bruel & Kjaer Type 4955-A
Temperature Logger	Picoscope TC-08
Tachometer	UNI-T UT372
Multimeters	Keysight 34465A, Keithley 2015 - THD
UPS	FSP Champ Tower 3kVA, CyberPower OLS3000E 3kVA
Isolation Transformer	4kVA

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

MSI MPG A1000G PCIE5

RESULTS	
Temperature Range (°C /°F)	30-32 / 86-89.6
ErP Lot 3/6 Ready	1
(EU) No 617/2013 Compliance	<i>J</i>
ALPM (Alternative Low Power Mode) compatible	1
ATX v3.1 PSU Power Excursion	✓

115V				
Average Efficiency	88.627%			
Efficiency With 10W (≤500W) or 2% (>500W)	78.753			
Average Efficiency 5VSB	78.580%			
Standby Power Consumption (W)	0.0135000			
Average PF	0.989			
Avg Noise Output	31.60 dB(A)			
Efficiency Rating (ETA)	GOLD			
Noise Rating (LAMBDA)	Standard++			

230V	
Average Efficiency	90.818%
Average Efficiency 5VSB	77.822%
Standby Power Consumption (W)	0.0717000
Average PF	0.964
Avg Noise Output	31.14 dB(A)
Efficiency Rating (ETA)	GOLD
Noise Rating (LAMBDA)	Standard++

POWER SPECIFICATIONS

Rail		3.3V	5V	12V	5VSB	-12V
Max. Power	Amps	22	22	83.5	3	0.3
	Watts	120		1000	3.6	15
Total Max. Power (W)		1000				

HOLD-UP TIME & POWER OK SIGNAL (230V)

Hold-Up Time (ms)	17.5
AC Loss to PWR_OK Hold Up Time (ms)	14.9
PWR_OK Inactive to DC Loss Delay (ms)	2.6

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 2/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

MSI MPG A1000G PCIE5

CABLES AND CONNECTORS

Cable Count	Connector Count (Total)	Gauge	In Cable Capacitors
1	1	18-22AWG	No
2	2	18AWG	No
2	4	16-18AWG	No
1	2	16-18AWG	No
1	1	16-26AWG	No
3	12	18AWG	No
1	4/1	18-20AWG	No
	Cable Count 1 2 1 1 3 1	1 1 2 2 2 4 1 2 1 1 3 12	1 1 18-22AWG 2 2 18AWG 2 4 16-18AWG 1 2 16-18AWG 1 1 16-26AWG 3 12 18AWG

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

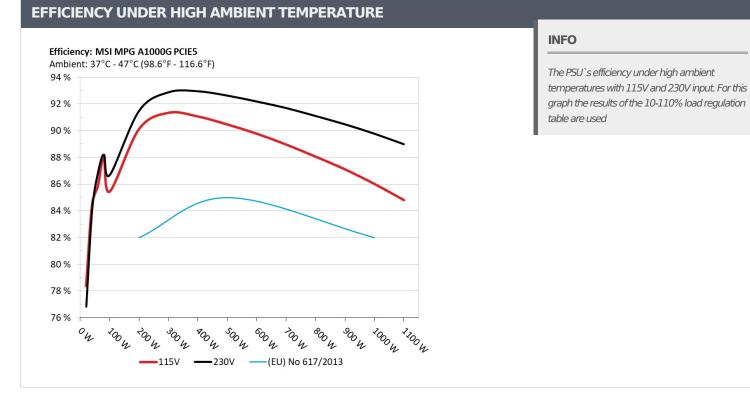
MSI MPG A1000G PCIE5

General Data	
Manufacturer (OEM)	CWT
Platform	CSZ
РСВ Туре	Double-Sided
Primary Side	
Transient Filter	4x Y caps, 2x X caps, 2x CM chokes, 1x MOV
Inrush Protection	1x NTC Thermistor SCK207R0 (7 Ohm) & Relay
Bridge Rectifier(s)	2x (2306)
APFC MOSFETs	2x Alpha Omega AOTF095A60L
APFC Boost Diode	1x CREE C3D10060A (600V, 12A @ 140°C)
Bulk Cap(s)	1x Nichicon (400V, 820uF, 2,000h @ 105°C, GL)
Main Switchers	2x Infineon IPA60R125P6 (600V, 19A @ 100°C, Rds(on): 0.125Ohm)
APFC Controller	Champion CM6500UNX & CM03X
Resonant Controller	Champion CU6901VA
Topology	Primary side: APFC, Half-Bridge & LLC converter Secondary side: Synchronous Rectification & DC-DC converters
Secondary Side	
+12V MOSFETs	8x On Semiconductor NTMFS5C430N (40V, 131A @ 100°C, Rds(on): 1.7mOhm)
5V & 3.3V	DC-DC Converters: 2x UBIQ QM3054M6 (30V, 61A @ 100°C, Rds(on): 4.8mOhm) & 2x UBIQ QN3107M6N (30V, 70A @ 100°C, Rds(on): 2.6mOhm) PWM Controller(s): uPI-Semi uP3861P
Filtering Capacitors	Electrolytic: 1x Nichicon (2-5,000h @ 105°C, HD), 2x Nippon Chemi-Con (1-5,000h @ 105°C, KZE), 2x Nichicon (4-10,000h @ 105°C, HE), 2x Rubycon (4-10,000h @ 105°C, YXJ) Polymer: 14x United Chemi-Con, 14x FPCAP
Supervisor IC	IN1S3151 - SAG
Fan Controller	Microchip PIC16F1503
Fan Model	Hong Hua HA13525H12SF-Z (135mm, 12V, 0.5A, Fluid Dynamic Bearing Fan)
5VSB Circuit	
Rectifier	1x D10PS45L SBR (45V, 10A)
Standby PWM Controller	On Bright OB2365T

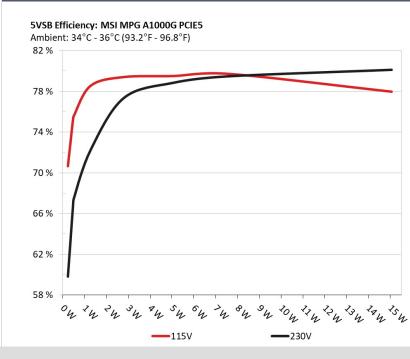
All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case


PAGE 4/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted



Anex

MSI MPG A1000G PCIE5

5VSB EFFICIENCY

INFO

This graph depicts the efficiency levels of the 5VSB rail with 115V and 230V input

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

 $\ensuremath{\mathsf{>}}$ The link to the original test results document should be provided in any case

PAGE 5/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

MSI MPG A1000G PCIE5

5VSB EFFICIENCY -115V (ERP LOT 3/6 & CEC)					
Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts	
	0.045A	0.228W	70.1.000/	0.032	
1	5.077V	0.325W	70.163%	114.85V	
2	0.09A	0.457W	74 (500)	0.06	
2	5.076V	0.612W	74.658%	114.85V	
2	0.55A	2.787W	78.92%	0.271	
3	5.067V	3.531W		114.85V	
	1A	5.059W		0.359	
4	5.059V	6.402W	79.018%	114.86V	
-	1.5A	7.574W	70.00.49/	0.422	
5	5.049V	9.559W	79.234%	114.85V	
6	ЗА	15.064W	77 4000/	0.501	
	5.021V	19.441W	77.482%	114.86V	

5VSB EFFICIENCY -230V (ERP LOT 3/6 & CEC)

Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
-	0.045A	0.228W	50 2220/	0.011
1	5.076V	0.385W	59.332%	229.85V
2	0.09A	0.457W	66 1 20/	0.02
2	5.075V	0.692W	66.13%	229.85V
	0.55A	2.787W	70.0010/	0.102
3	5.067V	3.626W	76.864%	229.85V
	1A	5.059W	70.260/	0.169
4	5.059V	6.456W	78.36%	229.86V
-	1.5A	7.574W	70.0000/	0.23
5	5.049V	9.588W	78.996%	229.85V
6	3A	15.063W		0.326
	5.021V	18.915W	79.636%	229.85V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 6/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

MSI MPG A1000G PCIE5

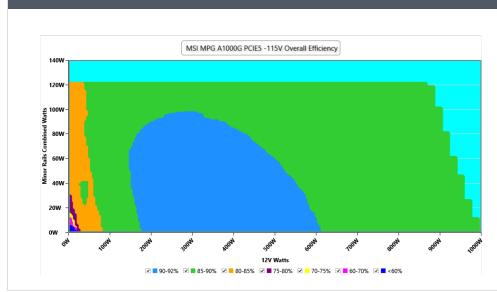
115V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

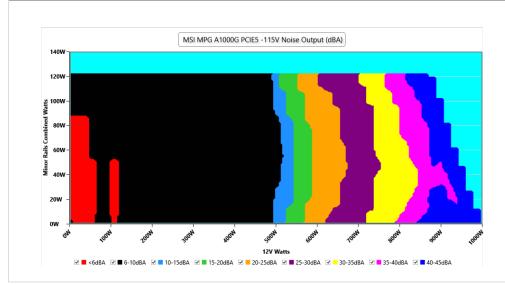
> The link to the original test results document should be provided in any case

PAGE 7/17


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

MSI MPG A1000G PCIE5

Anex


EFFICIENCY GRAPH 115V

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH 115V

INFO

The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

MSI MPG A1000G PCIE5

Anex

VAMPIRE POWER -115V

Detailed Results										
	Average	Min	Limit Min	Max	Limit Max	Result				
Mains Voltage RMS:	114.85 V	114.79 V	113.85 V	114.91 V	116.15 V	PASS				
Mains Frequency:	60.00 Hz	59.99 Hz	59.40 Hz	60.02 Hz	60.60 Hz	PASS				
Mains Voltage CF:	1.420	1.418	1.340	1.422	1.490	PASS				
Mains Voltage THD:	0.15 %	0.10 %	N/A	0.25 %	2.00 %	PASS				
Real Power:	0.014 W	0.001 W	N/A	0.028 W	N/A	N/A				
Apparent Power:	11.118 W	11.085 W	N/A	11.157 W	N/A	N/A				
Power Factor:	0.002	N/A	N/A	N/A	N/A	N/A				

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Anex

MSI MPG A1000G PCIE5

Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
100/	6.472A	1.981A	1.948A	0.991A	99.991	QE 4400/	0	-60	44.59°C	0.982
10%	12.112V	5.046V	3.388V	5.048V	117.022	85.449%	0	<6.0	40.37°C	114.82V
200/	13.965A	2.973A	2.924A	1.191A	199.938	00 1 2 5 0 /	0	-6.0	45.24°C	0.99
20%	12.104V	5.044V	3.385V	5.037V	221.82	90.135%	0	<6.0	40.66°C	114.78V
200/	21.848A	3.47A	3.413A	1.37A	299.988	01 2520/	0	-6.0	46.25°C	0.987
30%	12.081V	5.044V	3.384V	5.11V	328.385	91.353%	0	<6.0	41.2°C	114.76V
400/	29.684A	3.966A	3.903A	1.568A	399.532	01 0770/	0	-6.0	47.29°C	0.987
40%	12.072V	5.043V	3.382V	5.103V	438.677	91.077%	0	<6.0	41.61°C	114.72V
-00/	37.195A	4.958A	4.881A	1.767A	499.258	00.4700/	440	0.4	42.1°C	0.99
50%	12.065V	5.042V	3.38V	5.093V	551.789	90.479%	448	8.4	48.17°C	114.68V
500/	44.784A	5.953A	5.861A	1.968A	599.799	00 7050/	691	20 F	42.63°C	0.991
50%	12.058V	5.04V	3.378V	5.082V	668.041	89.785%		20.5	49.28°C	114.65V
700/	52.318A	6.948A	6.843A	2.169A	699.53	00.0770/	026	20.0	43.27°C	0.993
70%	12.050V	5.038V	3.376V	5.071V	786.187	88.977%	926	29.8	50.29°C	114.61V
200/	59.928A	7.941A	7.824A	2.272A	799.54	99.0600/	1206	37.6	43.8°C	0.994
30%	12.042V	5.037V	3.374V	5.062V	907.852	88.069%	1206		51.85°C	114.57V
200/	67.878A	8.44A	8.303A	2.375A	899.345	07 1 20/	1500	17.6	44.69°C	0.994
90%	12.034V	5.035V	3.372V	5.053V	1032.313	87.12%	1502	43.6	53.78°C	114.53V
1000/	75.637A	8.94A	8.812A	2.98A	999.376	06.0000/	1770	40.1	45.23°C	0.995
100%	12.027V	5.033V	3.37V	5.034V	1161.68	86.028%	1770	48.1	55.28°C	114.48V
1100/	83.338A	9.937A	9.887A	2.985A	1099.99	04.010/	1000	EO 1	46.65°C	0.996
110%	12.019V	5.032V	3.368V	5.026V	1297.01	84.81%	1888	50.1	57.55°C	114.45V
~ 1	0.116A	14.321A	14.129A	0A	121.304	- 02.2000/	200	75	41.86°C	0.988
CL1	12.105V	5.042V	3.376V	5.057V	145.47	83.388%	399	7.5	47.28°C	114.8V
CL2	0.114A	21.746A	0A	0A	111.295	01 6220/	401	7.5	41.43°C	0.986
	12.110V	5.054V	3.384V	5.061V	136.335	81.633% 401	401	C.1	48.49°C	114.81V
r n	0.114A	0A	21.502A	0A	73.985	75 /220/	200	75	40.84°C	0.979
CL3	12.110V	5.051V	3.376V	5.061V	98.082	75.433%	399	7.5	49.91°C	114.82V
83.135A 12.028V	83.135A	0A	0A	0A	999.94	06.0240/	1760	40.1	45.88°C	0.995
	5.055V	3.386V	5.097V	1151.554	86.834%	1769	48.1	56.8°C	114.5V	

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 10/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

MSI MPG A1000G PCIE5

20-80W LOAD TESTS 115V										
Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
2014	1.236A	0.494A	0.486A	0.197A	19.996	70 2670/	0	-6.0	39.63°C	0.866
20W	12.015V	5.063V	3.398V	5.07V	25.514	/8.36/%	78.367% 0	<6.0	36.57°C	114.85V
40144	2.720A	0.691A	0.68A	0.296A	39.997	04.4420/	42% 0	<6.0	40.95°C	0.939
40W	12.018V	5.062V	3.398V	5.067V	47.367	84.442%			37.63°C	114.84V
COLM	4.202A	0.89A	0.875A	0.395A	59.997	05.0010/		<6.0	41.91°C	0.968
60W	12.023V	5.054V	3.393V	5.063V	69.874	85.861%	0		38.04°C	114.83V
00144	5.682A	1.089A	1.071A	0.494A	79.938	00.0010/	0	C 0	43.19°C	0.977
80W	12.023V	5.049V	3.39V	5.06V	90.805	88.031%	0	<6.0	39.25°C	114.82V

RIPPLE MEASUREMENTS 115V

Test	12V	5V	3.3V	5VSB	Pass/Fail
10% Load	19.59mV	16.12mV	16.21mV	9.03mV	Pass
20% Load	21.12mV	18.68mV	18.27mV	9.70mV	Pass
30% Load	21.33mV	17.65mV	19.60mV	9.23mV	Pass
40% Load	22.35mV	17.65mV	19.86mV	10.11mV	Pass
50% Load	22.45mV	18.42mV	19.39mV	9.85mV	Pass
60% Load	22.35mV	18.53mV	19.70mV	10.11mV	Pass
70% Load	23.32mV	18.37mV	19.50mV	10.06mV	Pass
80% Load	23.88mV	20.63mV	20.22mV	10.78mV	Pass
90% Load	24.45mV	19.76mV	22.42mV	10.88mV	Pass
100% Load	36.41mV	20.95mV	22.18mV	11.70mV	Pass
110% Load	37.11mV	22.40mV	25.24mV	14.70mV	Pass
Crossload1	25.03mV	21.28mV	20.66mV	12.77mV	Pass
Crossload2	24.29mV	28.59mV	19.80mV	13.85mV	Pass
Crossload3	20.20mV	18.02mV	26.37mV	12.16mV	Pass
Crossload4	30.96mV	21.81mV	21.72mV	13.44mV	Pass

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 11/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

MSI MPG A1000G PCIE5

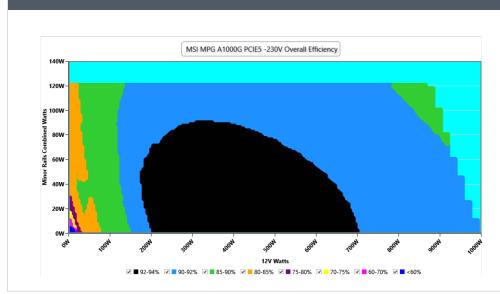
230V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

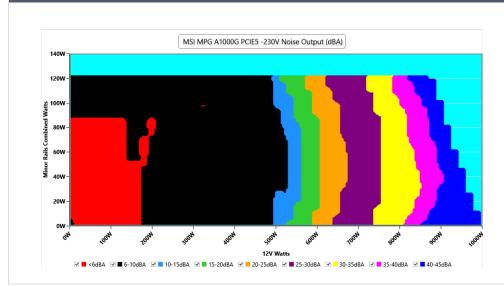
> The link to the original test results document should be provided in any case

PAGE 12/17


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

MSI MPG A1000G PCIE5

Anex


EFFICIENCY GRAPH 230V

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH 230V

INFO

The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

MSI MPG A1000G PCIE5

Anex

VAMPIRE POWER -230V

Detailed Results										
	Average	Min	Limit Min	Max	Limit Max	Result				
Mains Voltage RMS:	229.88 V	229.82 V	227.70 V	229.95 V	232.30 V	PASS				
Mains Frequency:	50.00 Hz	49.99 Hz	49.50 Hz	50.01 Hz	50.50 Hz	PASS				
Mains Voltage CF:	1.418	1.417	1.340	1.420	1.490	PASS				
Mains Voltage THD:	0.14 %	0.10 %	N/A	0.21%	2.00 %	PASS				
Real Power:	0.072 W	0.045 W	N/A	0.108 W	N/A	N/A				
Apparent Power:	38.433 W	38.361 W	N/A	38.492 W	N/A	N/A				
Power Factor:	0.002	N/A	N/A	N/A	N/A	N/A				

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Anex

MSI MPG A1000G PCIE5

Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
100/	6.474A	1.982A	1.948A	0.99A	99.992	06 6700/	0	.0.0	44.64°C	0.886
10%	12.110V	5.044V	3.389V	5.048V	115.359	86.678%	0	<6.0	40.38°C	229.85V
200/	13.967A	2.974A	2.923A	1.191A	199.939	01 4000/	0	.0.0	45.46°C	0.95
20%	12.103V	5.043V	3.386V	5.037V	218.544	91.488%	0	<6.0	40.88°C	229.83V
2007	21.851A	3.47A	3.412A	1.37A	299.989	02.070/	0	-6.0	46.38°C	0.968
30%	12.079V	5.042V	3.385V	5.109V	323.019	92.87%	0	<6.0	41.36°C	229.81V
100/	29.687A	3.967A	3.901A	1.568A	399.532	02.0440/	0		47.3°C	0.976
10%	12.070V	5.042V	3.384V	5.103V	429.863	92.944%	0	<6.0	41.85°C	229.79V
-00/	37.202A	4.959A	4.879A	1.768A	499.253	02 (20)	440	0.4	42.41°C	0.979
50%	12.063V	5.042V	3.382V	5.092V	539.036	92.62%	448	8.4	48.42°C	229.78V
2001	44.793A	5.953A	5.859A	1.968A	599.795	001770/	691	20 5	42.9°C	0.982
50%	12.055V	5.04V	3.38V	5.081V	650.696	92.177%		20.5	49.43°C	229.76V
100/	52.330A	6.948A	6.84A	2.17A	699.525	01 (000)/	070	78 28.2	43.31°C	0.984
70%	12.047V	5.038V	3.378V	5.07V	762.93	91.689%	878		50.32°C	229.75V
00/	59.941A	7.941A	7.82A	2.272A	799.531	01.0040/		27.1	43.82°C	0.985
30%	12.039V	5.037V	3.376V	5.061V	877.703	91.094%	1187	37.1	51.87°C	229.73V
2007	67.893A	8.441A	8.299A	2.375A	899.336	00 4720/	1500	42.0	44.01°C	0.986
90%	12.032V	5.035V	3.374V	5.052V	994.036	90.473%	1500	43.6	53.1°C	229.71V
000/	75.659A	8.94A	8.808A	2.981A	999.359	00 7710/	1000	50.0	45.64°C	0.987
L00%	12.024V	5.033V	3.372V	5.033V	1113.233	89.771%	1886	50.0	55.67°C	229.69V
1.00/	83.360A	9.937A	9.882A	2.985A	1099.981	00.0010/	2166	FO 1	46.89°C	0.989
L10%	12.016V	5.031V	3.369V	5.025V	1236.199	88.981%	2166	53.1	57.83°C	229.67V
~ 1	0.116A	14.32A	14.12A	0A	121.301	04.0010/	200	75	40.08°C	0.916
CL1	12.105V	5.042V	3.378V	5.057V	144.352	84.031%	399	7.5	45.59°C	229.84V
	0.114A	21.744A	0A	0A	111.3	02.2000/	200	75	41.91°C	0.909
12	12.110V	5.055V	3.386V	5.061V	135.293	82.266%	399	7.5	49.04°C	229.84V
	0.114A	0A	21.485A	0A	73.983	76 6000/	200	75	41.11°C	0.857
13	12.109V	5.051V		399	7.5	50.21°C	229.85V			
	83.135A	0A	0A	0A	999.928	00.4000/	1700	40.1	45.2°C	0.987
12.027V	5.055V	3.388V	5.096V	1105.115	90.482%	1769	48.1	56.17°C	229.7V	

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 15/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

MSI MPG A1000G PCIE5

20-80W LOAD TESTS 230V										
Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
2014	1.236A	0.494A	0.485A	0.197A	19.997	76.0000/	0	-6.0	39.72°C	0.464
20W	12.015V	5.062V	3.399V	5.07V	26.031	76.823%	0	<6.0	36.67°C	229.85V
40144	2.720A	0.691A	0.68A	0.296A	39.997	04.0000/	•	-6.0	41.01°C	0.672
40W	12.018V	5.062V	3.399V	5.067V	47.569	84.086%	0	<6.0	37.6°C	229.85V
C0144	4.202A	0.89A	0.875A	0.395A	59.997	00.0000/	86.863% 0	<6.0	42.11°C	0.777
60W	12.024V	5.053V	3.394V	5.063V	69.072	86.863%			38.57°C	229.85V
00111	5.682A	1.089A	1.07A	0.494A	79.939	00 10 00 /	0	<6.0	43.13°C	0.841
80W	12.024V	5.048V	3.391V	5.06V	90.634	88.196%	88.196% 0		39.27°C	229.85V

RIPPLE MEASUREMENTS 230V

Test	12V	5V	3.3V	5VSB	Pass/Fail
10% Load	19.84mV	17.35mV	17.65mV	9.44mV	Pass
20% Load	20.20mV	18.06mV	18.93mV	9.60mV	Pass
30% Load	20.56mV	17.09mV	17.08mV	8.72mV	Pass
40% Load	21.43mV	19.30mV	20.32mV	10.52mV	Pass
50% Load	21.53mV	18.94mV	19.75mV	10.42mV	Pass
60% Load	22.56mV	19.81mV	19.65mV	10.93mV	Pass
70% Load	22.91mV	18.78mV	19.24mV	11.24mV	Pass
80% Load	23.73mV	21.40mV	22.21mV	10.82mV	Pass
90% Load	23.32mV	21.20mV	21.44mV	10.98mV	Pass
100% Load	36.89mV	21.38mV	23.18mV	12.83mV	Pass
110% Load	36.61mV	20.85mV	24.43mV	12.13mV	Pass
Crossload1	23.02mV	20.33mV	21.42mV	12.50mV	Pass
Crossload2	22.35mV	27.25mV	19.08mV	13.03mV	Pass
Crossload3	19.53mV	17.81mV	24.06mV	12.31mV	Pass
Crossload4	32.93mV	21.78mV	22.29mV	13.68mV	Pass

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 16/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

MSI MPG A1000G PCIE5

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

PAGE 17/17