

Cooler Master MWE Bronze 750

1

Fixed cables

Lab ID#: CM19750038 Receipt Date: Jul 5, 2019 Test Date: May 17, 2019

Report:

Report Date: Jun 21, 2019

DUT INFORM	IATION	DUT SPECIFICA	DUT SPECIFICATIONS				
Brand	Cooler Master	Rated Voltage (Vrms)	100-240				
Manufacturer (OEM)	Gospower	Rated Current (Arms)	10-6				
Series	MWE Bronze	Rated Frequency (Hz)	50-60				
Model Number		Rated Power (W)	750				
Serial Number	MPE7501ACAAB1191400001	Туре	ATX12V				
DUT Notes		Cooling	120mm Fluid Dynamic Bearing Fan (HA1225H12F-Z)				

TEST EQUIPMENT

Electronic Loads	Chroma 63601-5 x4 Chroma 63600-2 x2 63640-80-80 x20 63610-80-20 x2
AC Sources	Chroma 6530, Keysight AC6804B
Power Analyzers	N4L PPA1530 x2
Sound Analyzer	Bruel & Kjaer 2270 G4
Microphone	Bruel & Kjaer Type 4955-A
Data Loggers	Picoscope TC-08 x2, Labjack U3-HV x2
Tachometer	UNI-T UT372 x2
Digital Multimeter	Keysight U1273AX, Fluke 289
UPS	CyberPower OLS3000E 3kVA x2
Transformer	3kVA x2

Semi-Passive Operation

Cable Design

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cooler Master MWE Bronze 750

RESULTS	
Temperature Range (°C /°F)	30-32 / 86-89.6 (+-2°C / +- 3.6°F)
ErP Lot 3/6 Ready	1
(EU) No 617/2013 Compliance	✓

115V		230V
Average Efficiency	85.672%	Average Efficiency
Efficiency With 10W (\leq 500W) or 2% (>500W)	72.857	Average Efficiency 5VSB
Average Efficiency 5VSB	78.167%	Standby Power Consumption (W)
Standby Power Consumption (W)	0.0765161	Average PF
Average PF	0.972	Avg Noise Output
Avg Noise Output	42.09 dB(A)	Efficiency Rating (ETA)
Efficiency Rating (ETA)	SILVER	Noise Rating (LAMBDA)
Noise Rating (LAMBDA)	Standard	

230V	
Average Efficiency	87.845%
Average Efficiency 5VSB	77.554%
Standby Power Consumption (W)	0.1901850
Average PF	0.907
Avg Noise Output	42.23 dB(A)
Efficiency Rating (ETA)	
Noise Rating (LAMBDA)	Standard

POWER SPECIFICATIONS

Rail		3.3V	5V	12V	5VSB	-12V
Mary Davies	Amps	20	20	62.5	3	0.3
Max. Power	Watts	120		750	15	3.6
Total Max. Power (W)		750				

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Bronze 750

CABLES AND CONNECTORS									
Captive Cables									
Description	Cable Count	Connector Count (Total)	Gauge	In Cable Capacitors					
ATX connector 20+4 pin (610mm)	1	1	18-20AWG	No					
8 pin EPS12V (630mm) / 4+4 pin EPS12V (120mm)	1	1/1	18AWG	No					
6+2 pin PCIe (530mm+120mm)	2	4	16-18AWG	No					
SATA (530mm+120mm+120mm+120mm)	2	8	18AWG	No					
4-pin Molex (520mm+120mm+120mm+120mm)	1	4	18AWG	No					
AC Power Cord (1400mm) - C13 coupler	1	1	18AWG	-					

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 3/14

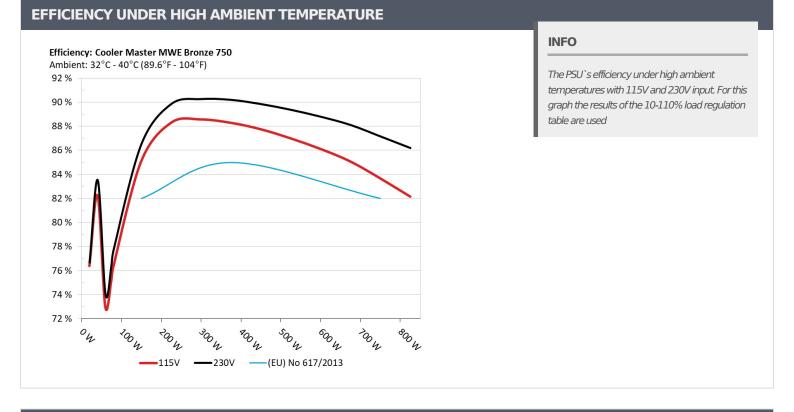
Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Bronze 750

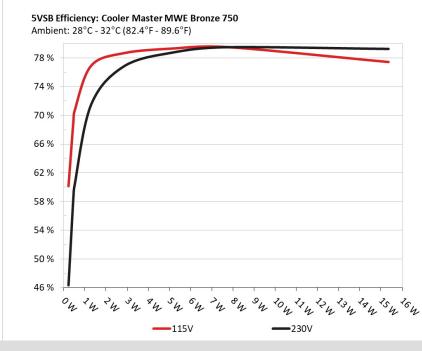
General Data	
Manufacturer (OEM)	Gospower
РСВ Туре	Single Sided
Primary Side	
Transient Filter	3x Y caps, 2x X caps, 2x CM chokes
Inrush Protection	NTC Thermistor & Relay
Bridge Rectifier(s)	1x GBU2508 (800V, 25A @ 100°C)
APFC MOSFETS	2x Sanrise Tech SRC60R140B (630V, 11.2A @ 125°C, 0.140hm)
APFC Boost Diode	1x Cengol CGC1506510 (650V, 10A @ 150°C)
Hold-up Cap(s)	1x Elite (420V, 680uF, 2000h @ 85°C, GM)
Main Switchers	2x Jilin Sino Microelectronics JCS18N50FH (500V, 11A @ 100°C, 0.270hm)
APFC Controller	Champion CM6500UNX
Resonant Controllers	Champion CU6901V
Topology	Primary side: Half-Bridge & LLC converter Secondary side: Synchronous Rectification & DC-DC converters
Secondary Side	
	$4 \times \text{Nec} \text{Device NCED40T11K/40V/0EA } 100% 2.0 m (hm)$
+12V MOSFETS	4x Nce Power NCEP40T11K (40V, 85A @ 100°C, 2.8mOhm)
5V & 3.3V	DC-DC Converters: 4x IPS FTD05N03NA (30V, 75A @ 100°C, 6mOhm) PWM Controllers: ANPEC APW7159C
Filtering Capacitors	Electrolytics: 4x Elite (2-5,000h @ 105°C, ED), 5x Elite (2,000h @ 105°C, EL), 2x CapXon (2-5,000h @ 105°C, KF), 1x CapXon (3- 10,000h @ 105°C, GH) Polymers: CapXon
Supervisor IC	IN1S313I-SAG
Fan Model	Hong Hua HA1225H12F-Z (120mm, 12V, 0.58A, Fluid Dynamic Bearing Fan)
5VSB Circuit	
Rectifier	-
Standby PWM Controller	On-Bright OB2365SP

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics


> The link to the original test results document should be provided in any case

PAGE 4/14


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Bronze 750

5VSB EFFICIENCY

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

 $\ensuremath{\mathsf{>}}$ The link to the original test results document should be provided in any case

INFO

This graph depicts the efficiency levels of the 5VSB rail with 115V and 230V input

PAGE 5/14

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Bronze 750

5VSB EFFICIEN	5VSB EFFICIENCY -115V (ERP LOT 3/6 & CEC)							
Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts				
1	0.045A	0.234	60 15 40/	0.025				
1	5.188V	0.389	60.154%	115.13V				
2	0.090A	0.467	- CO 2000/	0.043				
Z	5.187V	0.674	69.288%	115.13V				
2	0.550A	2.848	70 0000/	0.203				
3	5.177V	3.619	78.696%	115.12V				
	1.000A	5.167	70.0460/	0.304				
4	5.166V	6.512	79.346%	115.12V				
_	1.500A	7.733	70 5 430/	0.369				
5	5.154V	9.722	79.541%	115.12V				
6	3.000A	15.356	77.4000/	0.447				
	5.118V	19.824	77.462%	115.12V				

5VSB EFFICIENCY -230V (ERP LOT 3/6 & CEC)

<table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-container><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-container></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container>					
$ \begin{array}{c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
5.188 0.505 $230.30 $ 2 $0.090 A$ 0.467 0.975 $5.187 $ 0.795 $28.742%$ $20.30 $ 3 $0.550 A$ 2.848 $0.76828%$ 0.070 3 $0.550 A$ 2.848 0.707 $230.30 $ 4 $0.550 A$ 2.848 0.070 $230.30 $ 4 $0.00A$ $5.167 $ 3.707 $0.785%$ 0.120 4 $0.00A$ 6.560 $7.876%$ 0.120 $5.16 $ 6.560 7.733 0.169 0.169 5.154 9.727 $9.50%$ 0.276	1	0.045A	0.234	46 2270/	0.010
$ \begin{array}{c c c c c c } \hline 2 & & & & & & & & & & & & & & & & & &$	l	5.188V	0.505	40.337%	230.30V
$5.187 \vee$ 0.795 $230.30 \vee$ 3 $0.550 A$ 2.848 0.070 $5.177 \vee$ 3.707 7.828% 0.070 4 $1.000 A$ $5.167 \vee$ 0.120 4 $1.000 A$ 6.560 7.8765% 0.120 $5.166 \vee$ 6.560 7.733 0.169 $5.154 \vee$ 9.727 9.500% 0.276	2	0.090A	0.467	50,7400/	0.016
$\frac{3}{5.177 \times 3.707} = \frac{76.828\%}{230.33 \times 200} = \frac{1.000 \times 10^{-10}}{5.167 \times 10^{-10}} = \frac{1.000 \times 10^{-10}}{6.560} = \frac{76.828\%}{78.765\%} = \frac{0.120}{230.31 \times 10^{-10}} = \frac{0.120}{230.31 \times 10^{-10}} = \frac{1.500 \times 10^{-10}}{5.154 \times 10^{-10}} = \frac{7.73}{7.73} = \frac{7.950\%}{230.31 \times 10^{-10}} = \frac{0.169}{230.31 \times 10^{-10}} = \frac{1.500 \times 10^{-10}}{5.154 \times 10^{-10}} = \frac{1.5356}{5.154 \times 10^{-10}} = 1.535$	2	5.187V	0.795	58.742%	230.30V
$ \begin{array}{ c c c c c c } \hline 5.177 & $3.707 & $23.03V \\ \hline & $1.000A & $5.167 & $0.120 \\ \hline & $5.166V & $6.560 & $7.8765\% & $0.230.1V \\ \hline & $5.166V & $6.560 & $7.733 & $7.733 & $0.169 & $0.169 \\ \hline & $5.154V & $9.727 & $0.169 & $230.31V \\ \hline & $5.154V & $9.727 & $0.276 & $0.$	2	0.550A	2.848	76.0000/	0.070
4 78.765% 5.166V 6.560 1.500A 7.733 5.154V 9.727 3.000A 15.356 0.276	3	5.177V	3.707	76.828%	230.33V
5.166V 6.560 230.31V 5 1.500A 7.733 0.169 5.154V 9.727 230.31V 3.000A 15.356 0.276	4	1.000A	5.167		0.120
5 79.500% 5.154V 9.727 3.000A 15.356 0.276	4	5.166V	6.560	/8./05%	230.31V
5.154V 9.727 230.31V 3.000A 15.356 0.276	-	1.500A	7.733	70 5000/	0.169
	5	5.154V	9.727	/9.500%	230.31V
70.0010/	c.	3.000A	15.356	70.0010/	0.276
6 5.119V 19.374 79.261% 230.31V	6	5.119V	19.374	/9.201%	230.31V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 6/14

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

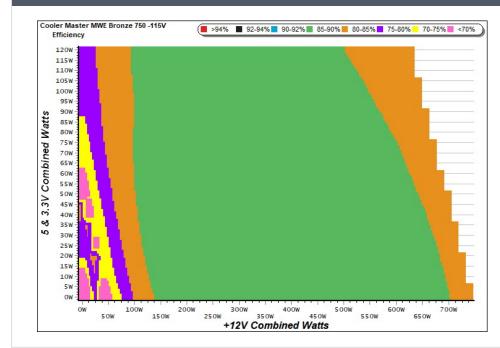
Cooler Master MWE Bronze 750

115V

All data and graphs included in this test report can be used by any individual on the following conditions:

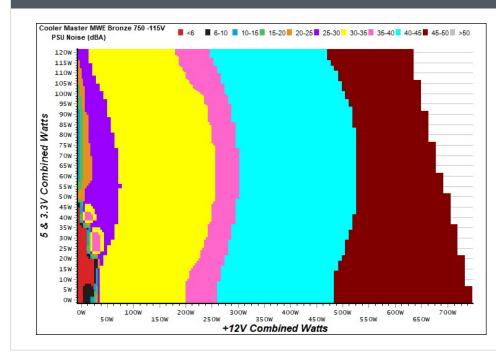
> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case


PAGE 7/14

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Bronze 750


EFFICIENCY GRAPH 115V

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH 115V

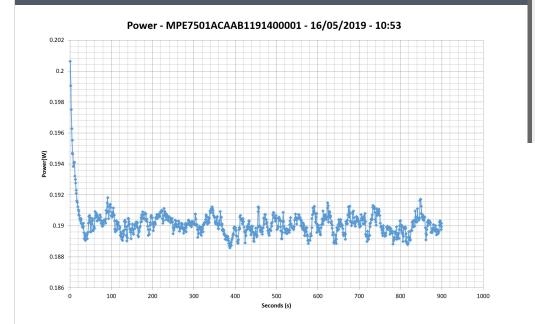
INFO

The PSU's noise in its entire operational range and under 30-32 °C (+-2 °C) ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case


PAGE 8/14

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Bronze 750

VAMPIRE POWER -115V

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Bronze 750

СОМ	COMMISSION REGULATION (EU) NO 617/2013 TESTING 115V									
Test #	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
2	9.788A	3.035A	2.978A	1.167A	149.347		1045	20.2	35.18°C	0.949
2	12.101V	4.943V	3.323V	5.144V	175.569	85.065% 1845	38.3	40.87°C	115.11V	
F	26.899A	5.090A	4.995A	1.762A	374.580	00.2000/	21/22	12.0	36.18°C	0.977
5	12.048V	4.913V	3.302V	5.108V	424.266	88.289%	2162	42.6	43.63°C	115.10V
10	55.087A	9.262A	9.101A	2.979A	749.930	00.0700/	2469	46.0	39.36°C	0.990
10	11.985V	11.985V 4.859V 3.264V 5.036V 896.291 83.670% 2468	2408	46.0	50.63°C	115.11V				

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 10/14

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

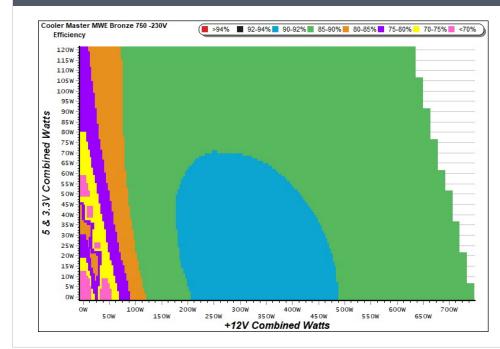
Cooler Master MWE Bronze 750

230V

All data and graphs included in this test report can be used by any individual on the following conditions:

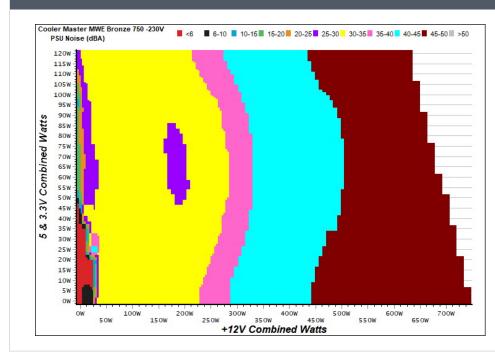
> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case


PAGE 11/14

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Bronze 750


EFFICIENCY GRAPH 230V

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH 230V

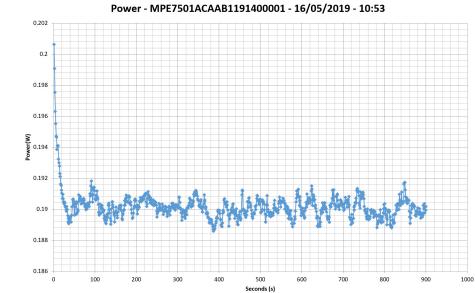
INFO

The PSU's noise in its entire operational range and under 30-32 °C (+-2 °C) ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case


PAGE 12/14

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Bronze 750

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Bronze 750

СОМ	COMMISSION REGULATION (EU) NO 617/2013 TESTING 230V										
Test #	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts	
2	9.793A	3.036A	2.977A	1.167A	149.398	06 40 40/	1075	20.4	34.86°C	0.850	
2	12.100V	4.943V	3.323V	5.144V	172.746	86.484% 1875	38.4	41.33°C	230.32V		
F	26.913A	5.090A	4.998A	1.762A	374.677	00.1050/	2156	40 7	36.03°C	0.930	
5	12.045V	4.913V	3.302V	5.107V	415.410	90.195%	2156	42.7	44.55°C	230.34V	
10	55.108A	9.265A	9.103A	2.979A	750.017	07 15 40/	2466	46.0	39.74°C	0.960	
10		4.858V	3.263V	5.035V	860.564	87.154%	2466	46.0	51.26°C	230.35V	

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics


> The link to the original test results document should be provided in any case

PAGE 14/14

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Bronze 750

Aristeidis Bitziopoulos Lab Director

CERTIFICATIONS 230V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

SILVER

> The link to the original test results document should be provided in any case

PAGE 15/14